Differentiation Formulas

- **1.** Differentiate : $h(t) = 8t^4 + 6\sqrt[4]{t^3} \frac{1}{3t^{10}} + 2$
- **2.** Find the equation of the tangent line to $g(x) = \sqrt{x^5} \left(x^{-4} + \sqrt[7]{x^2} \right)$ at x = 1.
- **3.** Find the point(s) where the tangent line to $f(x) = x^3 + 4x^2 8x + 3$ will be perpendicular to $y = 9 + \frac{1}{4}x$.
- **4.** The position function of an object is $s(t) = t^3 18t^2 + 96t + 8$ where t is in seconds and s is in feet. Assume that the object starts moving at t = 0 and answer the following questions.
 - (a) What is the velocity of the object at any time t?
 - **(b)** When, if ever, is the object at rest (*i.e.* not moving)?
 - (c) When is the object moving to the right and when is it moving to the left?
- **5.** What percentage of the range [-3,4] is $f(z) = 90 + 10z^3 z^4 2z^5$ decreasing?

Product and Quotient Rule

For problems 6 & 7 use the Product or Quotient Rule to find the derivative.

6.
$$h(t) = (2t^2 + t^{-4})(\frac{7}{t} - 3t)$$

7.
$$W(y) = \frac{y^2 - 3y}{7 - y^2}$$

8. Determine where the function $G(x) = \frac{x^2 + 10}{x^2 + 6x + 10}$ is not changing.

Derivative of Trig Functions

For problems 9-11 differentiate the given function.

9.
$$g(t) = 8\sec(t) + t^2\csc(t)$$

$$\mathbf{10.} \ \ y = \frac{\cot(z)}{6 + \sin(z)}$$

11.
$$Y(\theta) = \theta^2 - 15\cos(\theta)\sin(\theta)$$

- **12.** Find the equation of the tangent line to $y = x \tan(x)$ at $x = \frac{\pi}{4}$.
- **13.** The amount of money in an account (in thousands) is given by $A(t) = 2t 7\sin(t) + 12$ where t is in years. When during the first 10 years is the amount of money in the account not changing?