Differentiation Formulas

1. Differentiate: \(h(t) = 10t^9 - \frac{2}{\sqrt[3]{t^3}} + \frac{1}{9t^2} - 12 \)

2. Find the equation of the tangent line to \(g(x) = x^4(15x - 2x^{-3}) \) at \(x = -2 \).

3. Find the point(s) where the tangent lines to \(f(x) = x^3 + 7x^2 - 2x + 14 \) and \(g(x) = 5 - x - 4x^2 \) will be parallel.

4. The position function of an object is \(s(t) = 2t^3 - 51t^2 + 360t + 60 \) where \(t \) is in seconds and \(s \) is in feet. Assume that the object starts moving at \(t = 0 \) and answer the following questions.
 \(\text{(a)} \) What is the velocity of the object at any time \(t \)?
 \(\text{(b)} \) When, if ever, is the object at rest (\(i.e. \) not moving)?
 \(\text{(c)} \) When is the object moving to the right and when is it moving to the left?

5. What percentage of the range \([-8, 4]\) is \(f(w) = w^4 + 3w^3 - 22w^2 + 2 \) decreasing?

Product and Quotient Rule

For problems 6 & 7 use the Product or Quotient Rule to find the derivative.

6. \(R(z) = (2\sqrt{z} + 3)(\frac{3}{2}z^\frac{3}{2} - \sqrt{z^3}) \)

7. \(f(x) = \frac{1 - 6x}{10 - x + 3x^2} \)

8. Determine where the function \(V(t) = \frac{t^2}{2t^3 - 3t + 4} \) is not changing.

Derivative of Trig Functions

For problems 9 – 11 differentiate the given function.

9. \(g(t) = 4 \sec(t) - 8 \csc(t) + t \sin(t) \)

10. \(y = \frac{5 + \tan(x)}{3 - \cot(x)} \)

11. \(h(\theta) = 3 \cos(\theta) \sin(\theta) - \theta^4 \sec \theta \)

Continued on Back ⇒
12. Find the equation of the tangent line to \(y = \frac{3}{1 - \cos(x)} \) at \(x = \pi \).

13. The population of fish (in hundreds) in a lake is given by \(P(t) = 7t + 12 \sin(t) + 1 \) where \(t \) is in years. When in the first 180 months is the population not changing?