Arc Length
For problems 1 & 2 find the length of the given curve.

1. \(y = (x + 2)^{\frac{3}{2}} - 1, \ 0 \leq x \leq 6 \)

2. \(x = y^2 + 1, \ 1 \leq x \leq 10 \). Assume that \(y \geq 0 \) for this problem.

3. Set up, but do not evaluate an integral that will give the length of the following curve. Yes, I realize that there are no limits given, you will need to determine them. I also realize that this function is not given in the same form as the previous two, dealing with that is part of the problem.

\[
\frac{x^2}{25} + y^2 = 1
\]

Surface Area
For problems 4 & 5 find the surface area of the region obtained by rotating the function about the given axis.

4. \(x = e^y, \ 0 \leq y \leq 1 \) about the \(y \)-axis.

5. \(y = 1 + 3x^2, -1 \leq x \leq 2 \) about the \(y \)-axis.

6. Set up, but do not evaluate, the integral that will give the surface area obtained by rotating \(y = \cos^2 x, \ 0 \leq x \leq \pi \) about,

(a) the \(x \)-axis.
(b) the \(y \)-axis.

Parametric Equations and Curves
For problems 7 & 8 do each of the following.

(a) Eliminate the parameter for the parametric equations and sketch the parametric curve clearly indicating the direction in which the curve is traced out as \(t \) increases.

(b) Determine what (if any) limits exist on the values of \(x \) and \(y \).

(c) If the curve is traced out more than once give a range of \(t \)'s for which the curve is traced out exactly once. Tracing out a curve exactly once means that no portion of the curve will be retraced (in either direction) in the range of \(t \)'s given.

7. \(x = t + 1, \ y = 1 - t^2 \)

8. \(x = e^t, \ y = \frac{1}{2}e^t \)

Continued on Back ⇒
For problems 9 & 10 suppose that a particle is tracing out a path given by the following parametric equations. Completely describe the motion of the particle as \(t \) varies in the given interval. This means that you need to do (a) – (c) from the previous problems above as well as,

(d) If any portion of the curve is retraced determine how many times the path is traced out.

9. \(x = 4 - 2 \cos^2 \left(6t\right), \quad y = 3 \sin^2 \left(6t\right), \quad -2\pi \leq t \leq 7\pi \)

10. \(x = \cos \left(\frac{t}{3}\right), \quad y = 1 + 2 \cos^4 \left(\frac{t}{3}\right), \quad -2\pi \leq t \leq 7\pi \)