1. (3 pts) Here’s the IVP’s we need for this problem. Note that I’m using a time frame of months here and so all per week quantities will need to be multiplied by 4 to get them into a per month quantity.

\[P' = rP \quad P(0) = 300 \quad P(2) = 1200 \]

\[P' = rP + 30(4) - 40(4) = rP - 40 \quad P(0) = 300 \]

Solving the first and applying the initial condition gives the following solution which we can then apply the second condition,

\[P(t) = 300e^{rt} \quad 1200 = 300e^{2r} \quad r = \frac{1}{2} \ln(4) = \ln(4)^{\frac{1}{2}} = \ln(2) \]

The second IVP is now,

\[P' = \ln(2)P - 40 \quad P(0) = 300 \]

I’ll leave it to you to verify that the solution is,

\[P(t) = \frac{40}{\ln(2)} + 242.2922e^{\ln(2)t} \]

From this we can see that the insects will survive because everything is positive and the exponential will go to infinity as \(t \to \infty \).

3. (3 pts) Here’s the IVP for this case.

\[v' = 9.8 - \frac{30}{20} v = 9.8 - \frac{3}{2} v \quad v(0) = 0.75 \]

I’ll leave it to you to verify the solution to this.

\[v(t) = 6.5333 - 5.7833e^{-\frac{3}{2}t} \]

To determine when it hits the ground we can set this equal to 5 and solve for \(t \).

\[5 = 6.5333 - 5.7833e^{-\frac{3}{2}t} \quad \Rightarrow \quad 0.26513 = e^{-\frac{3}{2}t} \quad \Rightarrow \quad t = 0.8850 \]

The height function is,

\[s(t) = \int 6.5333 - 5.7833e^{-\frac{3}{2}t} dt \quad s(0) = 0 \quad \Rightarrow \quad s(t) = 6.5333t + 3.8556e^{-\frac{3}{2}t} - 3.8556 \]

The bridge is then \(s(0.8850) = 2.9487 \text{ m} \) above the ground.

4. (2 pts) The equilibrium solutions are: \(y = -8 \), \(y = -4 \), and \(y = 0 \). From a sketch of the solutions we can see the following classifications.

\[y = 0 : \text{ Semi-stable} \]
\[y = -4 : \text{ Asymp. Stable} \]
\[y = -8 : \text{ Unstable} \]
6. (2 pts) We just need to run through the formulas using \(f(t, y) = y + t^2 - \sin(y) \). Here’s the results for \(h = 0.4 \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>2.4</th>
<th>2.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'_n)</td>
<td>10.3430134013</td>
<td>17.8871924346</td>
</tr>
<tr>
<td>Approx.</td>
<td>11.1372053605</td>
<td>18.2920823344</td>
</tr>
</tbody>
</table>

Here’s the results for \(h = 0.2 \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>2.2</th>
<th>2.4</th>
<th>2.6</th>
<th>2.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'_n)</td>
<td>10.3430134013</td>
<td>13.5599105577</td>
<td>18.2479656363</td>
<td>21.9159513489</td>
</tr>
<tr>
<td>Approx.</td>
<td>9.0686026803</td>
<td>11.7805847918</td>
<td>15.4301779190</td>
<td>19.8133681888</td>
</tr>
</tbody>
</table>

For \(h = 0.4 \) we have \(y(2.8) \approx 18.2920823344 \) and for \(h = 0.2 \) we have \(y(2.8) \approx 19.8133681888 \).

2. The new IVP that we’ll need for this new situation is,

\[
P'_2 = \ln(2) P_2 + 30(4) - 40(4) - 120(4) = \ln(2) P_2 - 520 \quad P_2(1.5) = P_1(1.5) = 743.0136
\]

I’ll let you verify that the solution to this IVP is,

\[
P(t) = \frac{520}{\ln(2)} - 2.5413e^{\ln(2)t}
\]

So, it looks like the insects will now die out (although just barely it seems as \(c \) is only just switched over to negative!). Setting equal to zero and solving gives that they will die at \(t = 8.2056 \). So, they will die out after about 33 weeks (or so...).

5. The equilibrium solutions are \(y = 0 \) and \(y = 2 \). From a sketch of the solutions we can see the following classifications.

- \(y = 2 \): Asymp. Stable
- \(y = 0 \): Unstable