IVP’s with Step Functions
Use Laplace transforms to solve the given IVP. In the partial fraction stage all quadratics that can be factored with integer coefficients must be factored.

1. \(y'' - 8y' + 16y = 7u_1(t)e^{4t-4} \) \hspace{1cm} \(y(0) = 0, \ y'(0) = 2 \)

2. \(3y'' - y' = u_2(t) - 4u_3(t)e^{2t-6} \) \hspace{1cm} \(y(0) = 0, \ y'(0) = 0 \)

3. \(y'' - 2y = e^{-3t} + u_4(t)e^{12-3t} \) \hspace{1cm} \(y(0) = 2, \ y'(0) = 0 \)

Dirac-Delta Function
Use Laplace transforms to solve the given IVP. In the partial fraction stage all quadratics that can be factored with integer coefficients must be factored.

4. \(9y'' - 6y' + 10y = 6\delta(t-1) \) \hspace{1cm} \(y(0) = -4, \ y'(0) = 1 \)

5. \(y'' + 2y' - 8y = 7\delta(t-3) + 8u_{10}(t) \) \hspace{1cm} \(y(0) = 0, \ y'(0) = 0 \)

Convolution Integrals

6. Find the Laplace Transform of \(f(t) = \int_0^t e^{2t-2\tau} \cos\left(\frac{\pi}{2}\tau\right) d\tau \).

7. Use a convolution integral (make sure you evaluate the integral!) to find the inverse transform of
\[
H(s) = \frac{3}{(s+2)(s-7)}
\]

8. Find the solution to the following IVP in terms of \(g(t) \).
\(y'' - 8y' + 25y = g(t) \) \hspace{1cm} \(y(0) = -9, \ y'(0) = 0 \)