#2. (2 pts) First the complimentary solution is (I’ll leave the details to you to check).
\[y_c(t) = c_1 + c_2 e^{-2t} \]

The guess for the particular solution (and its derivatives) is,
\[Y_p(t) = Ae^{-t} + t(Bt + C) = Ae^{-t} + Bt^2 + Ct \]
\[Y'_p(t) = -Ae^{-t} + 2Bt + C \]
\[Y''_p(t) = Ae^{-t} + 2B \]

Note that we needed to add an extra \(t \) to the second and third terms since a constant is part of the complimentary solution. Plugging into the differential equation and simplifying gives,
\[-4Ae^{-t} + 14Bt + 6B - 7C = 9 - e^{-t} - 14t \]

Setting coefficient equal and solving gives,
\[e^{-t} : \quad -4A = -1 \quad \Rightarrow \quad A = \frac{1}{4} \]
\[t^1 : \quad 14B = -14 \quad \Rightarrow \quad B = -1 \]
\[t^0 : \quad 6B - 7C = 9 \quad \Rightarrow \quad C = \frac{5}{7} \]

The general solution is then,
\[y(t) = c_1 + c_2 e^{2t} + \frac{1}{4} e^{-t} - t^2 + \frac{5}{7} t \]

#4. (2 pts) First the complimentary solution is (I’ll leave the details to you to check).
\[y_c(t) = c_1 e^{6t} \cos t + c_2 e^{6t} \sin t \]

The guess for the particular solution is,
\[Y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt + E) e^{6t} + t(F e^{6t} \cos t + Ge^{6t} \sin t) \]

The second term needs an extra \(t \) because it is exactly the complimentary solution without the \(t \).

#7. (2 pts) First the complimentary solution is (I’ll leave the details to you to check).
\[y_c(t) = c_1 e^{\frac{1}{2}t} + c_2 e^{-3t} \]

Next, \(g(t) \) and the Wronskian.
\[g(t) = 2 + \frac{3}{2} e^{2t} \]
\[W = \begin{vmatrix} e^{\frac{1}{2}t} & e^{-4t} \\ \frac{1}{2} e^{\frac{1}{2}t} & -4e^{-4t} \end{vmatrix} = -\frac{9}{2} e^{-2t} \]

The particular solution is then,
\[Y_p = -e^{\frac{1}{2}t} \int \frac{e^{-4t} \left(2 + \frac{3}{2} e^{2t} \right)}{-\frac{9}{2} e^{-2t}} dt + e^{-4t} \int \frac{e^{\frac{1}{2}t} \left(2 + \frac{3}{2} e^{2t} \right)}{-\frac{9}{2} e^{-2t}} dt \]
\[= \frac{2}{9} e^{\frac{1}{2}t} \left(-4e^{-2t} + e^{\frac{3}{2}t} \right) - \frac{7}{9} e^{-4t} \left(\frac{1}{2} e^{4t} + \frac{3}{2} e^{6t} \right) = -1 + \frac{1}{6} e^{2t} \]

The general solution is then,
\[y(t) = c_1 e^{\frac{1}{2}t} + c_2 e^{-3t} - 1 + \frac{1}{6} e^{2t} \]
Finally apply the initial conditions, solve for the constants and find the actual solution.

\[
c_1 + c_2 - 1 + \frac{1}{6} = -2 \quad c_1 = -\frac{8}{9} \quad c_2 = -\frac{5}{18} \quad \Rightarrow \quad y(t) = -\frac{8}{9}e^{-\frac{t}{18}}e^{-4t} - 1 + \frac{1}{6}e^{2t}
\]

#9. (2 pts) Here are the important quantities.

\[
m = 0.06 \quad k = \frac{9.8(0.06)}{0.01} = 58.8 \quad \gamma = \frac{0.75}{0.0625} = 12 \quad \gamma_{CR} = 2\sqrt{(58.8)(0.06)} = 3.7566
\]

It looks like we’re overdamped in this case. The IVP is,

\[
0.06u'' + 12u' + 58.8u = 0 \quad u(0) = 0.10 \quad u'(0) = -0.08
\]

The general solution to this is,

\[
u(t) = c_1e^{-100-2\sqrt{2255}t} + c_2e^{100-2\sqrt{2255}t} = c_1e^{-5.0263t} + c_2e^{-194.9737t}
\]

Applying the initial conditions gives the actual solution of,

\[
u(t) = 0.1022e^{-5.0263t} - 0.002225e^{-194.9737t}
\]

#11. (2 pts) The IVP for this case is (using the previous work from #9).

\[
0.06u'' + 12u' + 58.8u = 7\cos(2t) \quad u(0) = 0.10 \quad u'(0) = -0.08
\]

The complimentary solution from #9 is,

\[
u_c(t) = c_1e^{-5.0263t} + c_2e^{-194.9737t}
\]

The form of the particular solution will be,

\[
U_p(t) = A\cos(2t) + B\sin(2t)
\]

Differentiating this, plugging into the differential equation and simplifying will give,

\[
(58.56A + 24B)\cos(2t) + (-24A + 58.56B)\sin(2t) = 7\cos(2t)
\]

Setting coefficients equal gives,

\[
\begin{align*}
\cos(2t) & : 58.56A + 24B = 7 \\
\sin(2t) & : -24A + 58.56B = 0
\end{align*}
\]

\[
\Rightarrow A = 0.10235 \quad B = 0.04194
\]

So, the particular and general solutions are then,

\[
U_p(t) = 0.10235\cos(2t) + 0.04194\sin(2t)
\]

\[
u(t) = c_1e^{-5.0263t} + c_2e^{-194.9737t} + 0.10235\cos(2t) + 0.04194\sin(2t)
\]

Applying the initial conditions gives,

\[
u(t) = -0.0032699e^{-5.0263t} + 0.00092487e^{-194.9737t} + 0.10235\cos(2t) + 0.04194\sin(2t)
\]

The final step is to combine the last two terms into a single cosine.

\[
R = \sqrt{(0.10235)^2 + (0.04194)^2} = 0.11061 \quad \delta_1 = \tan^{-1}\left(\frac{0.04194}{0.10235}\right) = 0.389001 \quad \delta_1 = 0.389001
\]

\[
\delta_2 = \delta_1 + \pi = 3.53059
\]

In this case we need \(\delta_1\) and so the final answer is,

\[
u(t) = -0.0032699e^{-5.0263t} + 0.00092487e^{-194.9737t} + 0.11061\cos(2t - 0.389001)\]
#1. First the complimentary solution is (I’ll leave the details to you to check).

\[y_c(t) = c_1 e^{-4t} \cos(2t) + c_2 e^{-4t} \sin(2t) \]

The guess for the particular solution (and its derivatives) is,

\[Y_p(t) = A + B \cos(2t) + D \sin(2t) \]
\[Y'_p(t) = -2B \sin(2t) + 2D \cos(2t) \]
\[Y''_p(t) = -4B \cos(2t) - 4D \sin(2t) \]

Note that we don’t need an extra \(t \) here because the sine and cosine both have an exponential in front of them in the complimentary solution. Plugging into the differential equation and simplifying gives,

\[20A + (16B + 16D) \cos(2t) + (-16B + 16D) \sin(2t) = 5 + 4 \cos(2t) - 8 \sin(2t) \]

Setting coefficient equal and solving gives,

\[\cos(2t) : \quad 16B + 16D = 4 \quad A = \frac{1}{4} \]
\[\sin(2t) : \quad -16B + 16D = -8 \quad \Rightarrow \quad B = \frac{1}{8} \]
\[t^0 : \quad 10A = 5 \quad D = -\frac{1}{8} \]

The general solution is then,

\[y(t) = c_1 e^{-4t} \cos(2t) + c_2 e^{-4t} \sin(2t) + \frac{1}{4} + \frac{1}{8} \cos(2t) - \frac{1}{8} \sin(2t) \]

#3. First the complimentary solution is (I’ll leave the details to you to check).

\[y_c(t) = c_1 e^{-4t} + c_2 e^{2t} \]

The guess for the particular solution (and its derivatives) is,

\[Y_p(t) = Ae^t + t(Bl + C)e^{2t} = Ae^t + (Bl^2 + Ct)e^{2t} \]
\[Y'_p(t) = Ae^t + (2Bl^2 + (2B + 2C)t + C)e^{2t} \]
\[Y''_p(t) = Ae^t + (4Bl^2 + (8B + 4C)t + 2B + 4C)e^{2t} \]

Note that we had to add an extra \(t \) onto the second term because \(Ce^{2t} \) is part of the complimentary solution. Plugging into the differential equation and simplifying gives,

\[12Bte^{2t} + (2B + 6C)e^{2t} - 5Ae^{-4t} = 20e^t - 90e^{2t} \]

Setting coefficient equal and solving gives,

\[te^{2t} : \quad 12B = -90 \quad A = -4 \]
\[e^{2t} : \quad 2B + 6C = 0 \quad \Rightarrow \quad B = -\frac{15}{2} \]
\[e^t : \quad -5A = 20 \quad C = \frac{5}{2} \]

The general solution is then,

\[y(t) = c_1 e^{-4t} + c_2 e^{2t} - 4e^t + \frac{5}{2}(t - 3t^2)e^{2t} \]

Finally, apply the initial conditions, solve for the constants and get the actual solution.
\[c_1 + c_2 - 4 = 0 \quad c_1 = \frac{17}{12} \]
\[-4c_1 + 2c_2 - 4 + \frac{5}{2} = -2 \quad c_2 = \frac{11}{12} \]
\[y(t) = \frac{17}{12} e^{-4t} + \frac{31}{12} e^{2t} - 4e^t + \frac{5}{2} \left(t - 3t^2 \right) e^{2t} \]

\#5. First the complimentary solution is (I’ll leave the details to you to check).
\[y_c(t) = c_1 e^{-12t} + c_2 t e^{-12t} \]
The guess for the particular solution is,
\[Y_p = (A t + B) \cos (4t) + (C t + D) \sin (4t) + t^2 \left(E t^2 + F t + G \right) e^{-12t} \]
The second term needs an extra \(t^2 \) because with no \(t \) or a single \(t \) a term from the complimentary solution is buried in it.

\#6. First the complimentary solution is (I’ll leave the details to you to check).
\[y_c(t) = c_1 e^{-\frac{3}{2}t} \cos (2t) + c_2 e^{-\frac{3}{2}t} \sin (2t) \]
Next, \(g(t) = 3e^{-\frac{3}{2}t} \) (recall, the \(y'' \) needs a coefficient of 1) and the Wronskian is,
\[W = \begin{vmatrix} e^{-\frac{3}{2}t} \cos (2t) & e^{-\frac{3}{2}t} \sin (2t) \\ -\frac{3}{2} e^{-\frac{3}{2}t} \cos (2t) - 2e^{-\frac{3}{2}t} \sin (2t) & -\frac{3}{2} e^{-\frac{3}{2}t} \sin (2t) + 2e^{-\frac{3}{2}t} \cos (2t) \end{vmatrix} \]
\[= -\frac{3}{2} e^{-t} \sin (2t) \cos (2t) + 2e^{-t} \cos^2 (2t) - \left(-\frac{3}{2} e^{-t} \cos (2t) \sin (2t) - 2e^{-t} \sin^2 (2t) \right) \]
\[= 2e^{-t} \cos^2 (2t) + 2e^{-t} \sin^2 (2t) = 2e^{-t} \]
The particular solution is then,
\[Y_p = -e^{-\frac{3}{2}t} \cos (2t) \int e^{-\frac{3}{2}t} \sin (2t) \left(3e^{-\frac{3}{2}t} \right) \frac{dt}{2e^{-t}} + e^{-\frac{3}{2}t} \sin (2t) \int e^{-\frac{3}{2}t} \cos (2t) \left(3e^{-\frac{3}{2}t} \right) \frac{dt}{2e^{-t}} \]
\[= -\frac{3}{4} e^{-\frac{3}{2}t} \cos (2t) \int \sin (2t) dt + \frac{3}{4} e^{-\frac{3}{2}t} \sin (2t) \int \cos (2t) dt \]
\[= \frac{3}{4} e^{-\frac{3}{2}t} \cos^2 (2t) + \frac{3}{4} e^{-\frac{3}{2}t} \sin^2 (2t) = \frac{3}{4} e^{-\frac{3}{2}t} \]
The general solution is then,
\[y(t) = c_1 e^{-\frac{3}{2}t} \cos (2t) + c_2 e^{-\frac{3}{2}t} \sin (2t) + \frac{3}{4} e^{-\frac{3}{2}t} \]

\#8. Here are all the important quantities.
\[m = \frac{1}{32} = \frac{1}{128} \quad k = \frac{1}{6} = \frac{1}{2} \quad \omega_0 = \frac{1}{\sqrt{1/128}} = 8 \]
The IVP is,
\[\frac{1}{128} u'' + \frac{1}{6} u = 0 \quad u(0) = -\frac{1}{12} \quad u'(0) = -\frac{5}{12} \]
The general solution is
Math 3301 Homework Set 6 – Solutions 10 Points

\[u(t) = c_1 \cos(8t) + c_2 \sin(8t) \]

Applying the initial conditions gives,
\[u(t) = -\frac{1}{12} \cos(8t) - \frac{5}{96} \sin(8t) \]

Now convert into a single cosine.
\[R = \sqrt{\left(\frac{1}{12}\right)^2 + \left(\frac{5}{96}\right)^2} = \frac{\sqrt{65}}{96} \]
\[\delta_1 = \tan^{-1} \left(\frac{-\frac{5}{96}}{-\frac{1}{12}}\right) = 0.5586 \]
\[\delta_2 = \delta_1 + \pi = 3.7002 \]

In this case \(\delta \) is in the third quadrant and so \(\delta_2 \) is the correct angle. The solution is,
\[u(t) = \frac{\sqrt{65}}{96} \cos(8t - 3.7002) \]

#10. Here’s the IVP for this case (using the previous work from #8).
\[\frac{1}{12} u'' + \frac{1}{2} u = e^{-4t} - \sin t \]
\[u(0) = -\frac{1}{12}, \quad u'(0) = -\frac{5}{12} \]

From #8 we know that the complimentary solution is,
\[u_c(t) = c_1 \cos(8t) + c_2 \sin(8t) \]

We’ll use undetermined coefficients for the particular solution. The form will be,
\[U_p(t) = A \cos t + B \sin t + Ce^{-4t} \]

Note that at this point we know that we WON’T have resonance. Because the frequency in the forcing function sine is not \(\omega = 8 \) we won’t need to add a \(t \) onto these terms and so we won’t get resonance. Differentiating \(U_p(t) \), plugging into the differential equation and simplifying gives,
\[\cos t : \frac{63}{128} A \cos(8t) + \frac{63}{128} B \sin(8t) + \frac{5}{8} Ce^{-4t} = e^{-4t} - \sin t \]

Setting coefficients equal gives,
\[
\begin{align*}
\cos t &: \quad \frac{63}{128} A = 0 \\
\sin t &: \quad \frac{63}{128} B = -1 \\
e^{-4t} &: \quad \frac{5}{8} C = 1
\end{align*}
\]

\[\Rightarrow \quad A = 0 \quad B = -\frac{128}{63} \quad C = \frac{8}{5} \]

The particular and general solution is then,
\[U_p(t) = -\frac{128}{63} \sin t + \frac{8}{5} e^{-4t} \]
\[u(t) = c_1 \cos(8t) + c_2 \sin(8t) - \frac{128}{63} \sin t + \frac{8}{5} e^{-4t} \]

Applying the initial conditions gives,
\[u(t) = -1.68333 \cos(8t) + 1.00188 \sin(8t) - \frac{128}{63} \sin t + \frac{8}{5} e^{-4t} \]

The final step is to then combine the first two terms into a single cosine.
\[R = \sqrt{(-1.68333)^2 + (1.00188)^2} = 1.9589 \]
\[\delta_1 = \tan^{-1} \left(\frac{1.00188}{-1.68333}\right) = -0.5369 \]
\[\delta_2 = \delta_1 + \pi = 2.6047 \]
We’ll need δ_2 here so the final answer is,

$$u(t) = 1.9589 \cos(8t - 2.6047) - \frac{128}{63} \sin t + \frac{8}{5} e^{-4t}$$