Step Functions
For problems 1 – 3 find the Laplace transform of the given function.
1. \(f(t) = 13u_{12}(t)e^{\frac{1}{2}t} + 9u_7(t)\sinh(5t - 35) \)

2. \(g(t) = u_2(t)\sin(6t) - 8t^2u_4(t) \)

3. \(h(t) = \begin{cases}
6t & t < 4 \\
8 + 4t & 4 \leq t < 8 \\
4t + 10e^{-t} & t \geq 8
\end{cases} \)

For problems 4 – 6 find the inverse transform of each of the following.
4. \(H(s) = \frac{3e^{-s}}{s} + \frac{7e^{-10s}}{s^2 + 16} + \frac{(s + 7)e^{-4s}}{s^2 + 14s + 58} \)

5. \(F(s) = \frac{8 + 4se^{-6s} - 2e^{-10s}}{(s + 3)(s - 7)} \)

6. \(G(s) = \frac{se^{-5s} - 12e^{-4s} + 8se^{-3s}}{s(2s^2 + 8)} \)

IVP’s with Laplace Transforms
Use Laplace transforms to solve the given IVP. In the partial fraction stage all quadratics that can be factored with integer coefficients must be factored!
7. \(y'' - 6y' + 9y = 7e^{3t} \quad y(0) = -8, y'(0) = -1 \)

8. \(4y'' - 48y' + 145y = 7e^t \quad y(0) = 0, y'(0) = 3 \)

9. \(y'' + 9y = -4\sin(3t) \quad y(0) = 4, y'(0) = -7 \)