Double Integrals in Polar Coordinates
For problems 1 & 2 evaluate the integral over the given region.
1. \[\iint_D 6x^2y \, dA, \quad D \text{ is the region between } x^2 + y^2 = 9 \text{ and } x^2 + y^2 = 25 \text{ and to the left of the } y\text{-axis.} \]

2. \[\iint_D e^{-3x^2-3y^2} \, dA, \quad D \text{ is the disk of radius 6 centered at the origin.} \]

3. Find the volume of the solid that is bounded by \(y = 16 - x^2 - z^2 \) and \(y = 2x^2 + 2z^2 - 32 \). Note that you will have to use a modified version of polar coordinates to do this problem.

4. Use a double integral to derive the formula for the area of a circle of radius \(a \).

5. Evaluate \[\iint_{-3}^{0} \cos \left(2x^2 + 2y^2 \right) \, dy \, dx \] by converting the integral into polar coordinates.

Triple Integrals
For problems 6 – 9 evaluate the given integral.

6. \[\iiint_1^2 \int_0^6 \int_0^{x^2 \sin \left(\frac{2}{y} \right)} \, dx \, dz \, dy \]

7. \(\iiint_E 3 - 12z \, dV \) where \(E \) is the solid bounded by the planes \(x + 2y + 2z = 6 \), \(x = 0 \), \(y = 0 \), and \(z = 0 \). In other words \(E \) is the solid that lies beneath \(2x + y + 3z = 6 \) and in the first octant.

8. \(\iiint_E y \, dV \) where \(E \) is the solid that lies between \(x + 2y + 2z = 6 \) and \(2x + 4y + 4z = 20 \) and is in front of the triangle in the \(yz\)-plane with vertices (0,0), (1,0) and (1,2) – these are in the form \((y,z) \).

9. \(\iiint_E \sqrt{y^2 + z^2} \, dV \) where \(E \) is the solid that is in front of \(x = 4y^2 + 4z^2 - 3 \) and behind \(x = 1 \).

10. Use a triple integral to find the volume of the solid \(E \) used in problem 8.

Triple Integrals with Cylindrical Coordinates
For problems 11 – 13 you must use cylindrical coordinates to do the problem.

11. \(\iiint_E y \, dV \) where \(E \) is the solid that lies inside \(x^2 + y^2 = 9 \), above \(z = -\frac{1}{2} x^2 - \frac{1}{2} y^2 \) and below \(z = \sqrt{x^2 + y^2} \)

Continued on Back ⇒
12. Find the volume of the solid E that is bounded by $y = x^2 + z^2 - 6$ and $y = 9 - 2x^2 - 2z^2$.

13. Use a triple integral to find a formula for the volume of a cylinder of radius a and height h.