1. (2 pts)
(a)

$$
\begin{aligned}
f(-1)=1 \quad & \lim _{x \rightarrow-1^{-}} f(x)=1 \quad \lim _{x \rightarrow-1^{+}} f(x)=-2 \\
& \lim _{x \rightarrow-1} f(x)=\text { doesn't exist b/c } \lim _{x \rightarrow-1^{-}} f(x) \neq \lim _{x \rightarrow-1^{+}} f(x)
\end{aligned}
$$

(b) $f(1)=$ doesn't exist $\quad \lim _{x \rightarrow 1^{-}} f(x)=2 \quad \lim _{x \rightarrow 1^{+}} f(x)=2 \quad \lim _{x \rightarrow 2} f(x)=2$
(c) $f(4)=-2 \quad \lim _{x \rightarrow 4^{-}} f(x)=-3 \quad \lim _{x \rightarrow 4^{+}} f(x)=-3 \quad \lim _{x \rightarrow 4} f(x)=-3$
4. (2 pts) $\lim _{t \rightarrow-3} \frac{(t-6)(t+5)+15-t}{t^{2}+9 t+18}=\lim _{t \rightarrow-3} \frac{t^{2}-2 t-15}{t^{2}+9 t+18}=\lim _{t \rightarrow-3} \frac{(t-5)(t+3)}{(t+6)(t-3)}=\lim _{t \rightarrow-3} \frac{t-5}{t+6}=-\frac{8}{3}$

5. (2 pts)

$$
\begin{aligned}
\lim _{z \rightarrow 4} \frac{\sqrt{z^{2}-12}-2}{4-z} & =\lim _{z \rightarrow 4} \frac{\left(\sqrt{z^{2}-12}-2\right)}{(4-z)} \frac{\left(\sqrt{z^{2}-12}+2\right)}{\left(\sqrt{z^{2}-12}+2\right)}=\lim _{z \rightarrow 4} \frac{z^{2}-12-4}{(4-z)\left(\sqrt{z^{2}-12}+2\right)} \\
& =\lim _{z \rightarrow 4} \frac{(z-4)(z+4)}{-(z-4)\left(\sqrt{z^{2}-12}+2\right)}=\lim _{z \rightarrow 4} \frac{z+4}{-\left(\sqrt{z^{2}-12}+2\right)}=-2
\end{aligned}
$$

6. (2 pts - part (b) ONLY)

(a) In this case we can use the second formula because $x=0$ is completely inside this region.

$$
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \ln (x+9)=\ln (9)
$$

(b) Here we will need to look at the two one-sided limits because $x=-7$ is the "cut-off" point.

$$
\begin{array}{ll}
\lim _{x \rightarrow-7^{-}} g(x)=\lim _{x \rightarrow-7^{-}} x^{2}=49 \\
\lim _{x \rightarrow-7^{+}} g(x)=\lim _{x \rightarrow-7^{+}} \ln (x+9)=\ln (2) \quad \lim _{x \rightarrow-7^{-}} g(x) \neq \lim _{x \rightarrow-7^{+}} g(x)
\end{array}
$$

The two one-sided limits are not the same and so $\lim _{x \rightarrow-7} g(x)$ doesn't exist.
9. (2 pts) In both of these limits the numerator is staying fixed at 10 and as t approaches -1 (from either side) we can see that $1+t$ is approaching zero. So, we have a fixed number divided by something increasingly smaller and so it should make some sense that both of these are going to either ∞ or $-\infty$ and this will depend upon the sign of the denominator

In the first case $1+t$ is negative since $t<-1$ and raising this to the $7^{\text {th }}$ power will not change this. So, in this case we have a fixed positive number in the numerator divided by something increasingly smaller and negative and so the limit in this case will be $-\infty$.

In the second case $1+t$ is positive since $t>-1$ and raising this to the $7^{\text {th }}$ power will not change this. So, in this case we have a fixed positive number in the numerator divided by an increasingly smaller and positive number and so the limit in this case will be ∞. Here are the official answers to this problem.

$$
\lim _{t \rightarrow-1^{-}} \frac{10}{(1+t)^{7}}=-\infty \quad \quad \lim _{t \rightarrow-1^{+}} \frac{10}{(1+t)^{7}}=\infty
$$

Not Graded

2.

(a)

$$
\begin{aligned}
\lim _{x \rightarrow 6}[h(x)-3 g(x)-7 f(x)] & =\lim _{x \rightarrow 6} h(x)-\lim _{x \rightarrow 6} 3 g(x)-\lim _{x \rightarrow 6} 7 f(x) \\
& =\lim _{x \rightarrow 6} h(x)-3 \lim _{x \rightarrow 6} g(x)-7 \lim _{x \rightarrow 6} f(x) \\
& =1-3(9)-7(-4)=2
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow 6}[5-f(x) \sqrt{g(x)}] & =\lim _{x \rightarrow 6} 5-\lim _{x \rightarrow 6}[f(x) \sqrt{g(x)}] \\
& =\lim _{x \rightarrow 6} 5-\left[\lim _{x \rightarrow 6} f(x)\right]\left[\lim _{x \rightarrow 6} \sqrt{g(x)}\right] \\
& =\lim _{x \rightarrow 6} 5-\left[\lim _{x \rightarrow 6} f(x)\right]\left[\sqrt{\lim _{x \rightarrow 6} g(x)}\right] \\
& =5-(-4) \sqrt{9}=17
\end{aligned}
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow 6} \frac{f(x)+h(x)}{g(x)-7} & =\frac{\lim _{x \rightarrow 6}[f(x)+h(x)]}{\lim _{x \rightarrow 6}[g(x)-7]} \\
& =\frac{\lim _{x \rightarrow 6} f(x)+\lim _{x \rightarrow 6} h(x)}{\lim _{x \rightarrow 6} g(x)-\lim _{x \rightarrow 6} 7} \\
& =\frac{-4+1}{9-7}=-\frac{3}{2}
\end{aligned}
$$

3. $\lim _{x \rightarrow 2} \frac{3 x^{2}-7 x+2}{8-4 x}=\lim _{x \rightarrow 2} \frac{(3 x-1)(x-2)}{-4(x-2)}=\lim _{x \rightarrow 2} \frac{3 x-1}{-4}=-\frac{5}{4}$
4. Note that we can't just cancel the h 's since once is inside the absolute value bars. So, we'll use the hint and recall that,

$$
|h|= \begin{cases}h & \text { if } h \geq 0 \\ -h & \text { if } h<0\end{cases}
$$

With this we can do the two one sided limits to eliminate the absolute value bars.

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1 & \text { because } h<0 \text { in this case } \\
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{-}} 1=1 & \text { because } h>0 \text { in this case }
\end{array}
$$

The two one-sided limits are not the same and so $\lim _{h \rightarrow 0} \frac{|h|}{h}$ does not exist.
8. In both of these limits the numerator is staying fixed at -3 and as x approaches 4 (from either side) we can see that $x-4$ is approaching zero. So, we have a fixed number divided by something increasingly smaller and so it should make some sense that both of these are going to either ∞ or $-\infty$ and this will depend upon the sign of the denominator

In the first case $x-4$ is negative since $x<4$ and raising this to the $8^{\text {th }}$ power will make it positive. So, in this case we have a fixed negative number in the numerator divided by something increasingly smaller and positive and so the limit in this case will be $-\infty$.

In the second case $x-4$ is positive since $x>4$ and raising this to the $8^{\text {th }}$ powers will not change this. So, in this case we have a fixed negative number in the numerator divided by an increasingly smaller and positive number and so the limit in this case will be $-\infty$.

Here are the official answers to this problem.

$$
\lim _{x \rightarrow 4^{-}} \frac{-3}{(x-4)^{8}}=-\infty \quad \quad \lim _{x \rightarrow 4^{+}} \frac{-3}{(x-4)^{8}}=-\infty
$$

