## Limits At Infinity

Evaluate each of the following limits.

1. $\lim _{t \rightarrow-\infty} \frac{10-t-5 t^{3}}{6 t^{2}-7 t}$
2. $\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{(2 x+3)\left(1-x^{2}\right)}$
3. $\lim _{z \rightarrow \infty} \frac{1-z}{1+z+z^{2}}$
4. Evaluate $\lim _{w \rightarrow \infty} \frac{\sqrt{1+5 w^{2}}}{3-w}$ and $\lim _{w \rightarrow-\infty} \frac{\sqrt{1+5 w^{2}}}{3-w}$.

## Continuity

5. Determine where the following function is NOT continuous.

$$
g(x)=\frac{3 x+7}{x \cos (2 x)+x}
$$

6. Use the Intermediate Value Theorem to show that somewhere in the interval $[5,8]$ there is a root of $f(x)=x \cos (x)+\mathbf{e}^{x} \sin (x)$. Note that you aren't being asked to actually find the root, only show that one exists.
7. The function

$$
A(t)=\left(t^{2}-1\right) \mathbf{e}^{1-t^{2}}
$$

will have the value of -1 somewhere in the interval $[-2,2]$. Use the Intermediate Value theorem to find a span of width of no more that $1 / 2$ in which the function will have a value of -1 . Note that there are multiple answers to this question and any of them will be accepted.

## Definition of the Derivative

For problems 8-11 use the definition of the derivative to compute the derivative of the given function.
8. $g(x)=4+11 x$
9. $f(x)=1+8 x-2 x^{2}$
10. $g(w)=\sqrt{4 w+7}$
11. $R(t)=\frac{3}{t^{2}}$

## Interpretation of the Derivative

For problems 12-14 use the derivatives found in the previous part to answer each question.
12. Is $f(x)=1+8 x-2 x^{2}$ increasing, decreasing or not changing at $x=0$ ? What about at $x=6$ ?
13. Find the equation of the tangent line to $g(x)=4+11 x$ at $x=17$.
14. Does $R(t)=\frac{3}{t^{2}}$ ever stop changing? If so when does it stop?

