Limits At Infinity

Evaluate each of the following limits.

1.
$$\lim_{t \to -\infty} \frac{10 - t - 5t^3}{6t^2 - 7t}$$

2.
$$\lim_{x \to \infty} \frac{5x^3 + 1}{(2x+3)(1-x^2)}$$

$$3. \lim_{z \to \infty} \frac{1-z}{1+z+z^2}$$

4. Evaluate
$$\lim_{w \to \infty} \frac{\sqrt{1+5w^2}}{3-w}$$
 and $\lim_{w \to \infty} \frac{\sqrt{1+5w^2}}{3-w}$.

Continuity

5. Determine where the following function is NOT continuous.

$$g(x) = \frac{3x+7}{x\cos(2x)+x}$$

6. Use the Intermediate Value Theorem to show that somewhere in the interval [5, 8] there is a root of $f(x) = x \cos(x) + e^x \sin(x)$. Note that you aren't being asked to actually find the root, only show that one exists.

7. The function

$$A(t) = (t^2 - 1)\mathbf{e}^{1-t^2}$$

will have the value of -1 somewhere in the interval [-2, 2]. Use the Intermediate Value theorem to find a span of width of no more that $\frac{1}{2}$ in which the function will have a value of -1. Note that there are multiple answers to this question and any of them will be accepted.

Definition of the Derivative

For problems 8 – 11 use the definition of the derivative to compute the derivative of the given function. 8. g(x) = 4 + 11x

9.
$$f(x) = 1 + 8x - 2x^2$$

10. $g(w) = \sqrt{4w+7}$

Continued on Back \Rightarrow

11.
$$R(t) = \frac{3}{t^2}$$

Interpretation of the Derivative

For problems 12 – 14 use the derivatives found in the previous part to answer each question. **12.** Is $f(x) = 1 + 8x - 2x^2$ increasing, decreasing or not changing at x = 0? What about at x = 6?

13. Find the equation of the tangent line to g(x) = 4 + 11x at x = 17.

14. Does $R(t) = \frac{3}{t^2}$ ever stop changing? If so when does it stop?