2. (2 pts) Make sure you multiply out the denominator first before doing any actual limit work.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{(2 x+3)\left(1-x^{2}\right)} & =\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{2 x-2 x^{3}+3-3 x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{3}\left(5+\frac{1}{x^{3}}\right)}{x^{3}\left(\frac{2}{x^{2}}-2+\frac{3}{x^{3}}-\frac{3}{x}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{5+\frac{1}{x^{3}}}{\frac{2}{x^{2}}-2+\frac{3}{x^{3}}-\frac{3}{x}}=-\frac{5}{2}
\end{aligned}
$$

4. (2 pts)

$$
\begin{aligned}
\lim _{w \rightarrow \infty} \frac{\sqrt{1+5 w^{2}}}{3-w} & =\lim _{w \rightarrow \infty} \frac{\sqrt{w^{2}\left(\frac{1}{w^{2}}+5\right)}}{w\left(\frac{3}{w}-1\right)}=\lim _{w \rightarrow \infty} \frac{|w| \sqrt{\frac{1}{w^{2}}+5}}{w\left(\frac{3}{w}-1\right)} \quad \text { Assume } w>0 \text { because } w \rightarrow \infty \\
& =\lim _{w \rightarrow \infty} \frac{w \sqrt{\frac{1}{w^{2}}+5}}{w\left(\frac{3}{w}-1\right)}=\lim _{w \rightarrow \infty} \frac{\sqrt{\frac{1}{w^{2}}+5}}{\frac{3}{w}-1}=\frac{\sqrt{5}}{-1}=-\sqrt{5}
\end{aligned}
$$

For the second limit the work will be identical until we get rid of the absolute value. In this case, we can assume that $w<0$ because $w \rightarrow-\infty$. So, picking up we get,

$$
\lim _{w \rightarrow \infty} \frac{\sqrt{1+5 w^{2}}}{3-w} \lim _{w \rightarrow \infty} \frac{|w| \sqrt{\frac{1}{w^{2}}+5}}{w\left(\frac{3}{w}-1\right)}=\lim _{w \rightarrow \infty} \frac{-w \sqrt{\frac{1}{w^{2}}+5}}{w\left(\frac{3}{w}-1\right)}=\lim _{w \rightarrow \infty} \frac{-\sqrt{\frac{1}{w^{2}}+5}}{\frac{3}{w}-1}=\frac{-\sqrt{5}}{-1}=\sqrt{5}
$$

5. (2 pts) In this case we need to determine where the denominator will be zero. So, all we need to do is set the denominator equal to zero and solve.

$$
x \cos (2 x)+x=x(\cos (2 x)+1)=0 \quad \Rightarrow \quad x=0, \cos (2 x)+1=0
$$

So, we get $x=0$ as one point and we'll need to solve the second equation.

$$
\cos (2 x)=-1 \quad \rightarrow \quad 2 x=\pi+2 \pi n \quad \rightarrow \quad x=\frac{1}{2} \pi+\pi n, n=0, \pm 1, \pm 2, \ldots
$$

Note that in this case we can get the exact answer easily enough and from a unit circle we can see that there will be a single answer here. So, the function will not be continuous at,

$$
x=0, \quad x=\frac{1}{2} \pi+\pi n, n=0, \pm 1, \pm 2, \ldots
$$

9. (2 pts)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{1+8(x+h)-2(x+h)^{2}-\left(1+8 x-2 x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1+8 x+8 h-2\left(x^{2}+2 x h+h^{2}\right)-\left(1+8 x-2 x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{8 h-4 x h-2 h^{2}}{h}=\lim _{h \rightarrow 0}(8-4 x-2 h)=8-4 x \Rightarrow f^{\prime}(x)=8-4 x
\end{aligned}
$$

13. (2 pts) To write down the equation of the tangent line we'll need,

$$
g(17)=191 \quad g^{\prime}(17)=11
$$

The tangent line is then,

$$
y=191+11(x-17)=11 x+4
$$

So, the tangent line is identical to the original function. However, this should not surprise you as the original function was a line and so a tangent line to a line should be the same line!

Not Graded

1. $\lim _{t \rightarrow-\infty} \frac{10-t-5 t^{3}}{6 t^{2}-7 t}=\lim _{t \rightarrow-\infty} \frac{t^{2}\left(\frac{10}{t^{2}}-\frac{1}{t}-5 t\right)}{t^{2}\left(6-\frac{7}{t}\right)}=\lim _{t \rightarrow-\infty} \frac{\frac{10}{t^{2}}-\frac{1}{t}-5 t}{6-\frac{7}{t}}=\frac{\infty}{6}=\infty$
2. $\lim _{z \rightarrow \infty} \frac{1-z}{1+z+z^{2}}=\lim _{z \rightarrow \infty} \frac{z^{2}\left(\frac{1}{z^{2}}-\frac{1}{z}\right)}{z^{2}\left(\frac{1}{z^{2}}+\frac{1}{z}+1\right)}=\lim _{z \rightarrow \infty} \frac{\frac{1}{z^{2}}-\frac{1}{z}}{\frac{1}{z^{2}}+\frac{1}{z}+1}=\frac{0}{1}=0$
3. Not much to do here. The function is continuous because it is a sum/product of continuous functions. Now,

$$
f(5)=-140.899, \quad f(8)=2948.071
$$

So, we can see that $f(5)=-140.899<0<2948.071=f(8)$ and so, by the IVT there is a number c such that $5<c<8$ such that $f(c)=0$. Or in other words, c is a root of the function.
7. This problem seems quite complicated at first glance, but it isn't as bad as it might seem. We're being asked to find an interval with a width of no more than $1 / 2$ in which the function will have a value of -1 in $[-2,2]$. Let's just need to start by evaluating the function at all the integers in this interval.

$$
A(-2)=0.149 \quad A(-1)=0 \quad A(0)=-2.718 \quad A(1)=0 \quad A(2)=0.149
$$

So, from these numbers the IVT tells us that the function will have a value of -1 in the intervals $[-1,0]$ and $[0,1]$. These are both intervals of width 1 and so not quite what we want. However, with a couple of further computations we can get what we're looking for.

$$
A(-0.5)=-1.588 \quad A(0.5)=1.588
$$

The IVT now tells us that the function will have a value of -1 in the intervals $\left[-1,-\frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$. Either of these will work as answers for this problem.
8.

$$
\begin{gathered}
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{4+11(x+h)-(4+11 x)}{h}=\lim _{h \rightarrow 0} \frac{11 h}{h}=\lim _{h \rightarrow 0} 11=11 \\
g^{\prime}(x)=11
\end{gathered}
$$

10.

$$
\begin{aligned}
g^{\prime}(w) & =\lim _{h \rightarrow 0} \frac{g(w+h)-g(w)}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{4(w+h)+7}-\sqrt{4 w+7})}{h} \frac{(\sqrt{4(w+h)+7}+\sqrt{4 w+7})}{(\sqrt{4(w+h)+7}+\sqrt{4 w+7})} \\
& =\lim _{h \rightarrow 0} \frac{(4 w+4 h+7)-(4 w+7)}{h(\sqrt{4(w+h)+7}+\sqrt{4 w+7})}=\lim _{h \rightarrow 0} \frac{4 h}{h(\sqrt{4(w+h)+7}+\sqrt{4 w+7})} \\
& =\lim _{h \rightarrow 0} \frac{4}{\sqrt{4(w+h)+7}+\sqrt{4 w+7}}=\frac{4}{2 \sqrt{4 w+7}}=\frac{2}{\sqrt{4 w+7}} \Rightarrow g^{\prime}(w)=\frac{2}{\sqrt{4 w+7}}
\end{aligned}
$$

11.

$$
\begin{aligned}
& R^{\prime}(t)=\lim _{h \rightarrow 0} \frac{R(t+h)-R(t)}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{3}{(t+h)^{2}}-\frac{3}{t^{2}}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{3 t^{2}-3(t+h)^{2}}{t^{2}(t+h)^{2}}\right) \\
&= \lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{3 t^{2}-3\left(t^{2}+2 t h+h^{2}\right)}{t^{2}(t+h)^{2}}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-6 t h-3 h^{2}}{t^{2}(t+h)^{2}}\right)=\lim _{h \rightarrow 0} \frac{-6 t-3 h}{t^{2}(t+h)^{2}}=-\frac{6 t}{t^{4}}=-\frac{6}{t^{3}} \\
& R^{\prime}(t)=-\frac{6}{t^{3}}
\end{aligned}
$$

12. To answer this all we need is to evaluate the derivative we computed in \#10 and interpret the results.

$$
\begin{array}{ll}
f^{\prime}(0)=8>0 & f(x) \text { is increasing at } x=0 \\
f^{\prime}(6)=8-4 x=-16<0 & f(x) \text { is decreasing at } x=6
\end{array}
$$

14. The function will stop changing if the derivative is ever zero. So we need to solve,

$$
0=R^{\prime}(t)=-\frac{6}{t^{3}}
$$

But this has no solutions and so the function will never stop changing.

