Differentiation Formulas

1. Differentiate : $h(t)=10 t^{9}-\frac{2}{\sqrt[7]{t^{3}}}+\frac{1}{9 t^{2}}-12$
2. Find the equation of the tangent line to $g(x)=x^{4}\left(15 x-2 x^{-3}\right)$ at $x=-2$.
3. Find the point(s) where the tangent lines to $f(x)=x^{3}+7 x^{2}-2 x+14$ and $g(x)=5-x-4 x^{2}$ will be parallel.
4. The position function of an object is $s(t)=2 t^{3}-51 t^{2}+360 t+60$ where t is in seconds and s is in feet. Assume that the object starts moving at $t=0$ and answer the following questions.
(a) What is the velocity of the object at any time t ?
(b) When, if ever, is the object at rest (i.e. not moving)?
(c) When is the object moving to the right and when is it moving to the left?
5. What percentage of the range $[-8,4]$ is $f(w)=w^{4}+3 w^{3}-22 w^{2}+2$ decreasing?

Product and Quotient Rule

For problems 6 \& 7 use the Product or Quotient Rule to find the derivative.
6. $R(z)=(2 \sqrt{z}+3)\left(\sqrt[3]{z^{4}}-\sqrt{z^{5}}\right)$
7. $f(x)=\frac{1-6 x}{10-x+3 x^{2}}$
8. Determine where the function $V(t)=\frac{t^{2}}{2 t^{2}-3 t+4}$ is not changing.

Derivative of Trig Functions

For problems 9-11 differentiate the given function.
9. $g(t)=4 \sec (t)-8 \csc (t)+t \sin (t)$
10. $y=\frac{5+\tan (x)}{3-\cot (x)}$
11. $h(\theta)=3 \cos (\theta) \sin (\theta)-\theta^{4} \sec \theta$
12. Find the equation of the tangent line to $y=\frac{3}{1-\cos (x)}$ at $x=\pi$.
13. The population of fish (in hundreds) in a lake is given by $P(t)=7 t+12 \sin (t)+1$ where t is in years. When in the first 180 months is the population not changing?

