1. (2 pts) $u=8-2 t^{2} \quad d u=-4 t d t \quad t d t=-\frac{1}{4} d u \quad t=0: u=8, t=2: u=0$

$$
\int_{0}^{2} 2 t \mathbf{e}^{8-2 t^{2}} d x=-\frac{1}{2} \int_{8}^{0} \mathbf{e}^{u} d u=-\left.\frac{1}{2} \mathbf{e}^{u}\right|_{8} ^{0}=-\frac{1}{2}+\frac{1}{2} \mathbf{e}^{8}
$$

3. (2 pts) In this case we'll need to split the integral up since on the second term needs a substitution.

$$
\begin{gathered}
\int_{1}^{4} 12 z+\sin \left(\frac{\pi z}{2}\right) d z=\int_{1}^{4} 12 z d z+\int_{1}^{4} \sin \left(\frac{\pi z}{2}\right) d z \\
u=\frac{\pi z}{2} \quad d u=\frac{\pi}{2} d z \quad d z=\frac{2}{\pi} d u \quad z=1: u=\frac{\pi}{2}, u=4: u=2 \pi \\
\int_{1}^{4} 12 z+\sin \left(\frac{\pi z}{2}\right) d z=\int_{1}^{4} 12 z d z+\frac{2}{\pi} \int_{\frac{\pi}{2}}^{2 \pi} \sin (u) d u=\left.6 z^{2}\right|_{1} ^{4}-\left.\frac{2}{\pi} \cos (u)\right|_{\frac{\pi}{2}} ^{2 \pi}=90-\frac{2}{\pi}
\end{gathered}
$$

7. (2 pts) First we'll need intersection points.

$$
\begin{aligned}
x^{2}+2 x-4 & =x^{2} \\
2 x-4 & =0 \quad \rightarrow \quad x=2
\end{aligned}
$$

A sketch of the region is to the right and we can see that we'll need two integrals to find the area. Here they are,

$$
\begin{aligned}
A & =\int_{-3}^{2} x^{2}-\left(x^{2}+2 x-4\right) d x+\int_{2}^{3} x^{2}+2 x-4-\left(x^{2}\right) d x \\
& =\int_{-3}^{2} 4-2 x d x+\int_{2}^{3} 2 x-4 d x=\left.\left(4 x-x^{2}\right)\right|_{-3} ^{2}+\left.\left(x^{2}-4 x\right)\right|_{2} ^{3}=25+1=26
\end{aligned}
$$

8. (2 pts) First we'll need intersection points.

$$
\begin{aligned}
(y-2)^{2} & =4 \\
y-2 & = \pm 2 \quad \rightarrow \quad y=0, y=4
\end{aligned}
$$

A sketch of the region is to the right. Here is the integral.

$$
\begin{aligned}
A & =\int_{0}^{4} 4-(y-2)^{2} d y=\int_{0}^{4} 4 d y-\int_{0}^{4}(y-2)^{2} d y \quad u=y-2 \\
& =\int_{0}^{4} 4 d y-\int_{-2}^{2} u^{2} d u=\left.4 y\right|_{0} ^{4}-\left.\frac{1}{3} u^{3}\right|_{-2} ^{2}=16-\left(\frac{8}{3}+\frac{8}{3}\right)=\frac{32}{3}
\end{aligned}
$$

10. (2 pts) A sketch of the region (shaded) and the mirrored region is to the right. The intersection points are clearly at $y=0$ and $y=4$. The radii are then,

$$
\text { o.r. }=6-(y-2)^{2} \quad \text { i.r. }=6-4=2
$$

The volume is then,

$$
\begin{aligned}
V & =\int_{0}^{4} \pi\left[\left(6-(y-2)^{2}\right)^{2}-(2)^{2}\right] d y \\
& =\pi \int_{0}^{4} y^{4}-8 y^{3}+12 y^{2}+16 y d y \\
& =\left.\pi\left(\frac{1}{5} y^{5}-2 y^{4}+4 y^{3}+8 y^{2}\right)\right|_{0} ^{4}=\frac{384}{5} \pi
\end{aligned}
$$

Not Graded

2.

$$
\begin{gathered}
u=1+4 \mathbf{e}^{x} d u=4 \mathbf{e}^{x} d x \quad \mathbf{e}^{x} d x=\frac{1}{4} d u \quad x=\ln (2): u=1+4(2)=9, x=\ln (5): u=21 \\
\left.\int_{\ln (2)}^{\ln (5)} \frac{\mathbf{e}^{x}}{1+4 \mathbf{e}^{x}} d x=\frac{1}{4} \int_{9}^{21} \frac{1}{u} d u=\frac{1}{4} \ln \right\rvert\, u \|_{9}^{21}=\frac{1}{4} \ln (21)-\frac{1}{4} \ln (9)=0.22182
\end{gathered}
$$

4. I had intended for the denominator of the first term to be $4 y-8$ in which case the answer would be the following.... For this integral notice that we will have division by zero issues in the first term at $y=2$ and this is inside the interval of integration and so this integral can't be done.

However, since I messed up the problem statement here is how to work the problem as written. Note that because of the y in the numerator we'll need to do one of those "tricky" substitutions for the first term.

$$
\begin{array}{r}
\int_{1}^{6} \frac{3 y}{8 y-4}-\cos (y) \mathbf{e}^{\sin (y)} d y=\int_{1}^{6} \frac{3 y}{8 y-4} d y-\int_{1}^{6} \cos (y) \mathbf{e}^{\sin (y)} d y \\
\begin{aligned}
& u=8 y-4 \quad d u=8 d y \quad \frac{1}{8} d u=d y \quad y=\frac{1}{8}(u+4) \quad y=1: u=4, \quad y=6: u=44 \\
& v=\sin (y) \quad d y=\cos (y) d y \quad y=1: v=\sin (1), \quad y=6: v=\cos (6)
\end{aligned} \\
\int_{1}^{6} \frac{3 y}{8 y-4}-\cos (y) \mathbf{e}^{\sin (y)} d y=\frac{1}{8} \int_{1}^{6} \frac{\frac{3}{8}(u+4)}{u} d u-\int_{\sin (1)}^{\sin (6)} \mathbf{e}^{v} d v=\frac{3}{64} \int_{1}^{6} 1+\frac{4}{u} d u-\int_{\sin (1)}^{\sin (6)} \mathbf{e}^{v} d v \\
=\left.\frac{3}{64}(u+4 \ln |u|)\right|_{1} ^{6}-\left.\mathbf{e}^{v}\right|_{\sin (6)} ^{\sin (1)}=\frac{3}{64}(5+4 \ln (6))-\mathbf{e}^{\sin (1)}+\mathbf{e}^{\sin (6)}
\end{array}
$$

Overall this was a good problem as it covered a lot of things that we talked about in a single problem.
5. We'll need to split this integral up as both terms require different substitutions.

$$
\begin{gathered}
\int_{2}^{1} \sqrt{1+2 x}+(1-x)^{5} d x=\int_{2}^{1} \sqrt{1+2 x} d x+\int_{2}^{1}(1-x)^{5} d x \\
u=1+2 x d u=2 d x \quad d x=\frac{1}{2} d u \quad x=2: u=5, \quad x=1: u=3 \\
v=1-x d v=-d x \quad d x=-d v \quad x=2: v=-1, \quad x=1: v=0 \\
\int_{2}^{1} \sqrt{1+2 x}+(1-x)^{5} d x=\frac{1}{2} \int_{5}^{3} u^{\frac{1}{2}} d u-\int_{-1}^{0} v^{5} d v=\left.\frac{1}{3} u^{\frac{3}{2}}\right|_{5} ^{3}-\left.\frac{1}{6} v^{6}\right|_{-1} ^{0}=\frac{1}{3} \sqrt{3}-\frac{1}{3} \sqrt{5}+\frac{1}{6}
\end{gathered}
$$

6. A sketch of the region is to the right ($y=x \mathbf{e}^{x^{2}}$ is the lower curve). Here is the integral.

$$
A=\int_{-1}^{1} 3+\mathbf{e}^{-x}-x \mathbf{e}^{x^{2}} d x=\int_{-1}^{1} 3 d x+\int_{-1}^{1} \mathbf{e}^{-x} d x-\int_{-1}^{1} x \mathbf{e}^{x^{2}} d x
$$

As noted the integral needs split into three separate integrals. The second and third each need a substitution and each substitution is different.

$$
\begin{aligned}
& u=-x \quad d u=-d x \quad d x=-d u \quad x=-1: u=1, \quad x=1: u=-1 \\
& v=x^{2} \quad d v=2 x d x \quad x d x=\frac{1}{2} d u \quad x=-1: u=1, x=1: u=1 \\
& A=\int_{-1}^{1} 3+\mathbf{e}^{-x}-x \mathbf{e}^{x^{2}} d x=\int_{-1}^{1} 3 d x-\int_{1}^{-1} \mathbf{e}^{u} d u-\frac{1}{2} \int_{1}^{1} \mathbf{e}^{v} d v=\left.3 x\right|_{-1} ^{1}-\left.\mathbf{e}^{u}\right|_{1} ^{-1}+0=6+\mathbf{e}-\mathbf{e}^{-1}
\end{aligned}
$$

Note that we know that the third integral will be zero because the upper and lower limits are the same.
9. A sketch of the region (shaded) and the mirrored region is to the right. The intersection points are clearly at $x=0$ and $x=1$. The radii are then,

$$
\text { o.r. }=1-x^{2} \quad \text { i.r. }=1-x
$$

The volume is then,

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left[\left(1-x^{2}\right)^{2}-(1-x)^{2}\right] d x=\pi \int_{0}^{1} x^{4}-3 x^{2}+2 x d x \\
& =\left.\pi\left(\frac{1}{5} x^{5}-x^{3}+x^{2}\right)\right|_{0} ^{1}=\frac{1}{5} \pi
\end{aligned}
$$

11. A sketch of the region (shaded) and the mirrored region is to the right. The radii are,

$$
\text { o.r. }=4+3+\mathbf{e}^{-x}=7+\mathbf{e}^{-x} \quad \text { i.r. }=4+x \mathbf{e}^{x^{2}}
$$

The integral giving the volume is then,

$$
V=\int_{0}^{1} \pi\left[\left(7+\mathbf{e}^{-x}\right)^{2}-\left(4+x \mathbf{e}^{x^{2}}\right)^{2}\right] d x
$$

Note that you do not have the knowledge to completely evaluate this integral at this point. Hence the set up only
 instruction......
12. A sketch of the region (shaded) and the mirrored region is to the right. The radius and height are are,

$$
\text { radius }=x \quad \text { height }=2 x-x^{2}
$$

The volume is then,

$$
\begin{aligned}
V & =\int_{0}^{2} 2 \pi x\left(2 x-x^{2}\right) d x=2 \pi \int_{0}^{2} 2 x^{2}-x^{3} d x \\
& =\left.2 \pi\left(\frac{2}{3} x^{3}-\frac{1}{4} x^{4}\right)\right|_{0} ^{2}=\frac{8}{3} \pi
\end{aligned}
$$

13. A sketch of the region (shaded) and the mirrored region is to the right. The radius and width are are,

$$
\text { radius }=y+3 \quad \text { width }=4-(y-2)^{2}
$$

The volume is then,

$$
\begin{aligned}
V & =\int_{0}^{4} 2 \pi(y+3)\left(4-(y-2)^{2}\right) d y \\
& =2 \pi \int_{0}^{4} 12 y+y^{2}-y^{3} d y \\
& =\left.2 \pi\left(6 y^{2}+\frac{1}{3} y^{3}-\frac{1}{4} y^{4}\right)\right|_{0} ^{4}=\frac{320}{3} \pi
\end{aligned}
$$

14. A sketch of the region (shaded) and the mirrored region is to the right. The radius and height are are,

$$
\text { radius }=2-x \quad \text { height }=3+\mathbf{e}^{-x}-x \mathbf{e}^{x^{2}}
$$

The integral giving the volume is then,

$$
V=\int_{-1}^{1} 2 \pi(2-x)\left(3+\mathbf{e}^{-x}-x \mathbf{e}^{x^{2}}\right) d x
$$

Note that you do not have the knowledge to completely evaluate this integral at this point. Hence the set up only
 instruction......

