Chain Rule

1. Use the Chain Rule to find $\frac{dw}{dt}$ given that,

$$w = \ln(2x+4z) + y^2x^3$$
 $x = \frac{1}{t^5}$ $y = t^3$ $z = e^{2t}$

- **2.** Use the Chain Rule to find $\frac{dz}{dy}$ given that $z = y^2 \cos(1+x^2)$, $x = 8-y^3$
- **3.** Use the Chain Rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ given that,

$$w = \sin(yx^2) - y^4 + 2x$$
, $x = 3t - 8s$ $y = p^2$ $p = t^5$

4. Write down the Chain Rule to find $\frac{\partial w}{\partial t}$ for the following situation.

$$w = f(x, y, z)$$
 $x = x(s,t)$ $y = y(t)$, $z = z(s, p)$ $p = p(u, v)$ $v = v(t)$

5. Use the Chain Rule to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for $y^2z^4 + \tan(1-x) = 3z^6 + 1$.

Directional Derivatives

- **6.** Find ∇f and the directional derivative for $f(x, y) = \sin(9x y^2)$ in the direction of $\vec{v} = \langle -6, 1 \rangle$ at the point (1, -3).
- **7.** Find the directional derivative of $f(x, y, z) = ze^{x^2 z} + y$ in the direction of $\vec{v} = \langle 1, 4, -3 \rangle$.
- **8.** Find the maximum rate of change of $f(x, y, z) = x^2 y^4 z + \frac{y z}{x}$ at the point (1, 2, -1) and the direction in which it occurs.
- **9.** Given that $\vec{u} = \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$, $\vec{v} = \left\langle \frac{2}{\sqrt{20}}, \frac{-4}{\sqrt{20}} \right\rangle$, $\vec{w} = \left\langle -\frac{4}{5}, \frac{3}{5} \right\rangle$, $D_{\vec{u}} f\left(0, -3\right) = -\frac{5}{\sqrt{2}}$ and $D_{\vec{v}} f\left(0, -3\right) = \frac{6}{\sqrt{5}}$ determine the value of $D_{\vec{w}} f\left(0, -3\right)$.

Tangent Planes

10. Find the equation of the tangent plane to $z = x^2 \cos(5x - y) - 2y$ at (1,5).