Tangent Planes and Normal Lines

1. Find the equations of the tangent plane and normal line to the surface given by $x(z^2 - y) - e^{x+3y} = 107$ at the point (6, -2, 4).

2. Find the point(s) on the surface $x^2 + 6y^2 - 3z^2 = -6$ where the tangent plane is parallel to the plane 2x - y - 4z = 2.

Relative Extrema

For problems 3 & 4 find and classify all the critical points of the given function.

3.
$$h(x, y) = x^4 - 2xy^2 - 8x^2 + 6y^2$$

4.
$$g(x,y) = \frac{x^3 - 4x^2 - 2x}{y^2 + 10}$$

Absolute Extrema

5. Find the absolute extrema of $f(x, y) = 2x(6 + xy + 2y^2)$ on the triangle with vertices (0,0), (6,12) and (6,-3).

Lagrange Multipliers

For problems 6-8 use Lagrange Multipliers to find the maximum and minimum values of the function subject to the given constraint.

6.
$$f(x,y) = 4x^2 - 3y^2$$
; $x^4 + y^4 = 16$

7.
$$f(x, y, z) = xyz$$
; $y^2 + 2z^2 - 2x = 32$

For this problem assume $x \le 0$. Why is this assumption important? And yes I do expect you to answer this....

8.
$$f(x, y, z) = 3x - 4y - z^2$$
; $x^2 + y^2 + z^2 = 25$