Iterated Integrals

For problems 1-3 evaluate the following integrals.

1. $\int_{1}^{-3} \int_{0}^{2} x^{2} y^{7} \cos \left(x^{3} y^{4}\right) d x d y$
2. $\iint_{R} x^{2} \cos ^{2}\left(\frac{y}{2}\right)+\frac{4 x^{3}}{x^{4}+1} d A, \quad R=[-1,2] \times[0,4]$
3. $\iint_{R} y \mathbf{e}^{3 y-x} d A$,
$R=[1,2] \times[-1,0]$

Double Integrals over General Regions

For problems 4-6 evaluate the following integrals.
4. $\int_{0}^{1} \int_{\sqrt{y}}^{2+y} x^{3}+\frac{1}{\sqrt{y}}-4 d x d y$
5. $\iint_{D} \frac{\mathbf{e}^{x^{4}+1}}{\sqrt{y}} d A, \quad D=\left\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x^{6}\right\}$
6. $\iint_{D} \sqrt[3]{1-\cos (y)} d A, \quad D$ is the region bounded by $x=\sin (y), y=0, y=\frac{\pi}{2}, y$-axis
7. Evaluate $\iint_{D} 12 y d A$ where D is the triangle in the $x y$-plane with vertices $(0,0),(6,0)$ and $(2,4)$ in the order given,
(a) Integrate with respect to \boldsymbol{y} first and then \boldsymbol{x}.
(b) Integrate with respect to \boldsymbol{x} first and then \boldsymbol{y}.
8. Find the volume behind $y=8-2 x^{2}-2 z^{2}$ and in front of the region in the $x z$-plane bounded by $z=x$ and $z=x^{2}$.

Note that we probably only looked at the volume under a function in the form $z=f(x, y)$ and above a region in the $x y$-plane. However, you can take that knowledge and modify it appropriately to arrive at a formula/method for working this problem.

Continued on Back \Rightarrow

For problems 9 and 10 evaluate the integral by reversing the order of integration.
9. $\int_{0}^{1} \int_{-y}^{y} 8 y x^{3} d x d y$
10. $\int_{0}^{2} \int_{y^{2}}^{4} y^{7} \mathbf{e}^{2+x^{5}} d x d y$
11. Evaluate $\iint_{D} 4 x+1 d A$ where D is the shaded region shown below.

