Double Integrals in Polar Coordinates

For problems $1 \& 2$ evaluate the integral over the given region.

1. $\iint_{D} 4 x y^{2} d A, D$ is the region between $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=1$ and in the $3^{\text {rd }}$ quadrant.
2. $\iint_{D} \frac{1}{\sqrt{2 x^{2}+2 y^{2}+1}} d A, D$ is the disk given by $x^{2}+y^{2}=2$.
3. Find the volume of the solid that is bounded by $y=7-4 x^{2}-4 z^{2}$ and $y=2 x^{2}+2^{2}-5$. Note that you will have to use a modified version of polar coordinates to do this problem.
4. Use a double integral to derive the formula for the area of a circle of radius a.
5. Evaluate $\int_{-2}^{0} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y$ by converting the integral into polar coordinates.

Triple Integrals

For problems 6-9 evaluate the given integral.
6. $\int_{1}^{-2} \int_{0}^{x^{2}} \int_{-y}^{y} y \mathbf{e}^{x^{7}} d z d y d x$
7. $\iiint_{E} 36 z d V$ where E is the solid bounded by the planes $5 x+2 y+z=10, x=0, y=0$, and $z=0$. In other words E is the solid that lies beneath $5 x+2 y+z=10$ and in the first octant.
8. $\iiint_{E} 4 z d V$ where E is the solid that lies between $2 x+6 y+5 z=30$ and $4 x+y+z=4$ and is in front of the region in the $y z$-plane bounded by $z=y^{2}$ and $z=\sqrt{y}$.
9. $\iint_{E} y z d V$ where E is the solid that is behind $x=5-2 y^{2}-2 z^{2}$ and in front of $x=y^{2}+z^{2}-7$.
10. Use a triple integral to find the volume of the solid E used in problem 8 .

Triple Integrals with Cylindrical Coordinates

For problems 11-13 you must use cylindrical coordinates to do the problem.
11. $\iiint_{E} x d V$ where E is the solid that lies inside $y^{2}+z^{2}=16$, in front of $x=4-y^{2}-z^{2}$ and behind $x=5$.
12. Find the volume of the solid E that is inside $x^{2}+y^{2}=1$ below $z=\sqrt{x^{2}+y^{2}}$ and above $z=-\sqrt{3 x^{2}+3 y^{2}}$.
13. Use a triple integral to find a formula for the volume of a cylinder of radius a and height h.

