Triple Integrals with Spherical Coordinates

For problems 1 and 2 you must use spherical coordinates to do the problems.

1. $\iiint_{E} 8 x+4 y d V$ where E is the region below the sphere of radius 3 and inside the cone $\varphi=\frac{\pi}{3}$.
2. $\iiint_{E} \mathbf{e}^{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} d V$ where E is the region that lies in the first octant and between the spheres of radius 1 and 4.
3. Evaluate the following integral by first converting to spherical coordinates.

$$
\int_{-\sqrt{3}}^{0} \int_{0}^{\sqrt{3-x^{2}}} \int_{-\sqrt{9-x^{2}-y^{2}}}^{-\sqrt{2 x^{2}+2 y^{2}}} z x d z d y d x
$$

Change of Variables

For problems 4 and 5 find the Jacobian of the transformation.
4. $x=u v-5 u^{3}+7 v, \quad y=3 v-8 u$
5. $x=\mu \cos \alpha, y=\mu \sin \alpha$

For problems 6-8 find and graph the image of the set R under the given transformation. Note that the point of these examples is not necessarily to transform R into a "nice" region. Instead all we're trying to do is apply some transformations to regions.
6. R is the triangle with vertices $(0,0),(-2,2),(6,2)$ and the transformation is $x=3 v, y=\sqrt{2-u}$. Note that for each side you'll want the range of possible x or y values to in order to get a range of possible u or v values that are needed for the transformed sides. This will make the sketch a little easier maybe......
7. R is the region bounded by $x y=2, x y=6, y=x, y=4$ and the transformation is $x=u, y=\frac{2 v}{u}$.
8. R is the disk given by $x^{2}+y^{2} \leq 1$ and the transformation is $u=a x, v=b y$.
9. If R is the parallelogram with vertices $(2,-1),(-2,1),(4,5)$ and $(0,7)$ use the transformation $x=2(u-2 v), y=-(u+12 v)$ to convert the region and evaluate the integral $\iint_{R} 3 x-y d A$.
10. If R is the ellipse $x^{2}+\frac{y^{2}}{4}=1$ determine a transformation that will convert this into a circle of radius 1 and use that transformation to evaluate $\iint_{R} x y d A$.
Note that you've already seen how to turn a circle of radius 1 into an ellipse so use that as a guide to determine this transformation.

Surface Area

For problems 11 and 12 find the area of the given surface.
11. The portion of the plane $8 x+4 y+3 z=24$ that lies in the first octant.
12. The portion of $z=4 x^{2}+4 y^{2}-1$ that lies below $z=11$.
13. In class I gave you the formula for the surface area of $z=f(x, y)$ that lies above a region D in the $x y$-plane. Use a modification of this formula to find the surface area of the portion of the surface $y=6+7 x+2 z^{2}$ that lies in front of the triangle in the $x z$-plane with vertices $(0,0),(6,3)$ and $(0,3)$.

