Vector Fields

For problems 1 and 2 find the gradient vector field for the given function.

1. $f(x, y)=x^{2} \ln \left(\frac{y^{3}}{x^{2}}\right)$
2. $f(x, y, z)=\frac{4 x-3 z}{y+2 z}$

Parametric Curves

For problems 3-6 write down a set of parametric equations for the given curve as well as a range of the parameter t for which the curve will be traced out exactly once. Make sure that your parametric equations also trace out the curve in the indicated direction, if a direction is given.
3. $4 x^{2}+\frac{y^{2}}{100}=1$
4. $y=x^{3}-\mathbf{e}^{-6 x},-3 \leq x \leq 0$
5. The line segment that starts at (4,-1) and ends at (1, 23).
6. The line $x=-3$ that starts at $y=13$ and ends at $y=-2$.

Line Integrals, Part I

7. Evaluate $\int_{C} 12 x^{3} d s$ over each of the following curves.
(a) C is the line segment from $(-1,1)$ to $(-2,-6)$.
(b) C is the curve shown below and for this problem you MUST follow the given orientation.

8. Evaluate $\int_{C} 4 x+7 y d s$ where C is the portion of $x^{2}+y^{2}=4$ that is in the $2^{\text {nd }}$ quadrant with clockwise orientation.
9. Evaluate $\int_{C} \frac{(x-1)^{3} y^{2}}{z} d s$ where C is the curve given by $\vec{r}(t)=\langle 1-t, 2 t, 3 t\rangle, 1 \leq t \leq 4$

Line Integrals, Part II

For problems 10-12 evaluate the line integral on he given curve.
10. $\int_{C} \cos (4 y) d y$ where C is the curve given by $y=\mathbf{e}^{2 x}, 0 \leq x \leq \ln (2)$.
11. $\int_{C} x^{3} d x-\left(x^{2}-1\right) d y$ where C is the line segment from $(-4,0)$ to $(0,4)$ followed by the right portion of the circle of radius 4 centered at the origin as shown below.

12. $\int_{C} y^{3} d x-(2-4 z) d y+2 x z d z$ where C is the line segment from $(2,-3,0)$ to $(-1,1,2)$.

