Green's Theorem

For problems 1 and 2 sketch the positively oriented curve (clearly indicating the positive orientation) and use Green's Theorem to evaluate the line integral along the given curve.

1. $\oint_C 5(1-4xy)dx + 9xdy$ where C is the portion of $x = (y-3)^2$ in the range $1 \le y \le 5$ and the three

line segments with endpoints: (i) (4,1) & (7,1), (ii) (7,1) & (7,5), (iii) (4,5) & (7,5).

2.
$$\int_C \vec{F} \cdot d\vec{r}$$
 where $\vec{F} = \left(xy^2 - 2y^3\right)\vec{i} + 2x^3\vec{j}$ and C is the shorter portion of $x^2 + y^2 = 9$ between $\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right) & \left(-\frac{3}{2}, \frac{3\sqrt{3}}{2}\right)$ and the two line segments with endpoints : (i) from $\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right) & (0,0)$ and (ii) $\left(-\frac{3}{2}, \frac{3\sqrt{3}}{2}\right) & (0,0)$.

Curl and Diverence

3. Find the curl and divergence of $\vec{F} = x^2 y^3 z^4 \vec{i} + x \ln(z) \vec{j} + (10z - 9y - 8x) \vec{k}$

For problems 4 and 5 use the curl to determine if the given vector field is conservative or not.

4.
$$\vec{F} = x^2 y^3 z^4 \vec{i} + x \ln(z) \vec{j} + (10z - 9y - 8x) \vec{k}$$

5.
$$\vec{F} = 2x \ln(y^2 z) \vec{i} - \left(27y^2 z^4 - \frac{2x^2}{y}\right) \vec{j} + \left(\frac{x^2}{z} - 36y^3 z^3\right) \vec{k}$$

Parametric Surfaces

For problems 6 – 9 find a parametric representation for the given surface.

- **6.** The plane containing the points (-1,2,4), (-1,0,3) and (5,2,3).
- **7.** The portion of $y = 7x^2 + 7z^2 9$ that lies behind y = 10.
- **8.** The cylinder $y^2 + z^2 = 15$ between x = 20 and x = 30.
- **9.** The portion of the sphere $x^2 + y^2 + z^2 = 100$ with $x \ge 0$ and $y \le 0$.
- **10.** Find the tangent plane to $x = u^2 + 4u 17$, $y = u^2 + uv^3$, $z = 5v^2$ at the point (15,128,20).

For problems 11 and 12 find the area of the given surface.

- **11.** The portion of $z = 5 2x^2 2y^2$ that lies above the plane given by z = 1.
- **12.** The surface $r(u,v) = u^2 \vec{i} + (3u v) \vec{j} + (1 + 2v) \vec{k}$ where u and v are in the triangle with vertices given by (0,0), (8,0) and (8,4) these are in the form (u,v).