Green's Theorem

For problems 1 and 2 sketch the positively oriented curve (clearly indicating the positive orientation) and use Green's Theorem to evaluate the line integral along the given curve.

1. $\oint_{C} 5(1-4 x y) d x+9 x d y$ where C is the portion of $x=(y-3)^{2}$ in the range $1 \leq y \leq 5$ and the three line segments with endpoints: (i) $(4,1) \&(7,1), \quad$ (ii) $(7,1) \&(7,5), \quad(i i i)(4,5) \&(7,5)$.
2. $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(x y^{2}-2 y^{3}\right) \vec{i}+2 x^{3} \vec{j}$ and C is the shorter portion of $x^{2}+y^{2}=9$ between $\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right) \&\left(-\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right)$ and the two line segments with endpoints: (i) from $\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right) \&(0,0)$ and (ii) $\left(-\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right) \&(0,0)$.

Curl and Diverence

3. Find the curl and divergence of $\vec{F}=x^{2} y^{3} z^{4} \vec{i}+x \ln (z) \vec{j}+(10 z-9 y-8 x) \vec{k}$

For problems 4 and 5 use the curl to determine if the given vector field is conservative or not.
4. $\vec{F}=x^{2} y^{3} z^{4} \vec{i}+x \ln (z) \vec{j}+(10 z-9 y-8 x) \vec{k}$
5. $\vec{F}=2 x \ln \left(y^{2} z\right) \vec{i}-\left(27 y^{2} z^{4}-\frac{2 x^{2}}{y}\right) \vec{j}+\left(\frac{x^{2}}{z}-36 y^{3} z^{3}\right) \vec{k}$

Parametric Surfaces

For problems 6-9 find a parametric representation for the given surface.
6. The plane containing the points $(-1,2,4),(-1,0,3)$ and $(5,2,3)$.
7. The portion of $y=7 x^{2}+7 z^{2}-9$ that lies behind $y=10$.
8. The cylinder $y^{2}+z^{2}=15$ between $x=20$ and $x=30$.
9. The portion of the sphere $x^{2}+y^{2}+z^{2}=100$ with $x \geq 0$ and $y \leq 0$.
10. Find the tangent plane to $x=u^{2}+4 u-17, y=u^{2}+u v^{3}, z=5 v^{2}$ at the point $(15,128,20)$.

For problems 11 and 12 find the area of the given surface.
11. The portion of $z=5-2 x^{2}-2 y^{2}$ that lies above the plane given by $z=1$.
12. The surface $r(u, v)=u^{2} \vec{i}+(3 u-v) \vec{j}+(1+2 v) \vec{k}$ where u and v are in the triangle with vertices given by $(0,0),(8,0)$ and $(8,4)$ - these are in the form (u, v).

