1. A sketch of the curve/region is to the right. The limits that we'll use for the double integral are : $1 \le y \le 5$, $7 \le x \le (y-3)^2$

The integral is,

$$\oint_C 5(1-4xy) dx + 9x dy = \iint_D 9 + 20x dA$$

$$= \int_1^5 \int_7^{(y-3)^2} 9 + 20x dx dy$$

$$= \int_1^5 9(y-3)^2 + 10(y-3)^4 - 553 dx$$

$$= (3(y-3)^3 + 2(y-3)^5 + 476y) \Big|_1^5 = \boxed{-2036}$$

2. A sketch of the curve/region is to the right. The limits are,

$$0 \le r \le 3$$
, $\frac{\pi}{6} \le \theta \le \frac{2\pi}{3}$

Note that for the angles we can use the endpoints on the circle and some right triangle trig to determine the angles.

The integral is then,

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{D} 6x^{2} - (2xy - 6y^{2}) dA$$

$$= \int_{\frac{\pi}{6}}^{\frac{2\pi}{3}} \int_{0}^{3} 6r^{3} - 2r^{3} \cos \theta \sin \theta dr d\theta$$

$$= \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{2\pi}{3}} 243 - 81 \cos \theta \sin \theta d\theta = \frac{81}{8} (6\pi - 1)$$

3.

$$\operatorname{curl} \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2}y^{3}z^{4} & x\ln(z) & 10z - 9y - 8x \end{vmatrix}$$

$$= -9\vec{i} + 4x^{2}y^{3}z^{3}\vec{j} + \ln(z)\vec{k} - 3x^{2}y^{2}z^{4}\vec{k} + 8\vec{j} - \frac{x}{z}\vec{i}$$

$$= \boxed{-(9 + \frac{x}{z})\vec{i} + (4x^{2}y^{3}z^{3} + 8)\vec{j} + (\ln(z) - 3x^{2}y^{2}z^{4})\vec{k}}$$

$$\operatorname{div} \vec{F} = 2xy^{3}z^{4} + 0 + 10 = \boxed{2xy^{3}z^{4} + 10}$$

4. From our work on #3 we can see that $\operatorname{curl} \vec{F} \neq \vec{0}$ and so the vector field is **not conservative**.

5. In this case the vector field **is conservative** because $\operatorname{curl} \vec{F} = \vec{0}$ as shown below.

$$\operatorname{curl} \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x \ln(y^2 z) & \frac{2x^2}{y} - 27y^2 z^4 & \frac{x^2}{z} - 36y^3 z^3 \end{vmatrix}$$
$$= -108y^2 z^3 \vec{i} + \frac{2x}{z} \vec{j} + \frac{4x}{y} \vec{k} - \frac{4x}{y} \vec{k} - \frac{2x}{z} \vec{j} + 108y^2 z^3 \vec{i} = \boxed{\vec{0}}$$

6. Let's call the points,

$$P = (-1, 2, 4)$$
 $Q = (-1, 0, 3)$ $R = (5, 2, 3)$

The following two vectors will live in the plane.

Fill live in the plane.
$$\overrightarrow{PQ} = \left<0, -2, -1\right> \qquad \overrightarrow{PR} = \left<6, 0, -1\right>$$

The cross product of these two will be normal to the plane.

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & -2 & -1 \\ 6 & 0 & -1 \end{vmatrix} = 2\vec{i} - 6\vec{j} + 12\vec{k}$$

Using the point Q the equation of the plane is,

$$2(x+1)-6y+12(z-3)=0$$
 \Rightarrow $2x-6y+12z=34$ \Rightarrow $z=\frac{1}{12}(34-2x+6y)$

The parameterization of the plane can then be written as,

$$\vec{r}(x,y) = \langle x, y, \frac{1}{12}(34 - 2x + 6y) \rangle$$

There will be no restrictions on x and y since we did not have any restrictions on the plane. Note as well that we could just have easily solved the equation of the plane for x or y and gotten two different (and potentially easier to deal with depending upon the problem) parameterizations.

7. The parameterization is : $\vec{r}(x,z) = \langle x,7x^2 + 7z^2 - 9,z \rangle$. The limits on the variables come from the intersection.

$$10 = 7x^2 + 7z^2 - 9 \qquad \Rightarrow \qquad x^2 + z^2 = \frac{19}{7}$$

So, (x, y) come from the disk : $x^2 + z^2 \le \frac{19}{7}$.

8. Using "polar" conversion formulas the parameterization is:

$$r(x,\theta) = \langle x, \sqrt{15} \sin \theta, \sqrt{15} \cos \theta \rangle$$
. The limits are $: 0 \le \theta \le 2\pi, \ 20 \le x \le 30$.

9. Using the spherical conversion formulas the parameterization is:

$$\vec{r}(\theta, \varphi) = \langle 10\sin\varphi\cos\theta, 10\sin\varphi\sin\theta, 10\cos\varphi \rangle$$

The limits are : $\frac{3}{2}\pi \le \theta \le 2\pi$, $0 \le \varphi \le \pi$. Note the limits on θ are because we must be in the 4th quadrant ($x \ge 0$ and $y \le 0$). We also need the complete range of φ because there were no restrictions on z mentioned and so we need to assume all possible values of z.

#10. First find \vec{r}_{u} and \vec{r}_{v} .

$$\vec{r}(u,v) = (u^2 + 4u - 17)\vec{i} + (u^2 + uv^3)\vec{j} + 5v^2\vec{k}$$

$$\vec{r}_u(u,v) = (2u+4)\vec{i} + (2u+v^3)\vec{j} \qquad \vec{r}_v(u,v) = 3uv^2\vec{j} + 10v\vec{k}$$

Now, find the cross product of the two

$$\vec{r}_{u} \times \vec{r}_{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2u + 4 & 2u + v^{3} & 0 \\ 0 & 3uv^{2} & 10v \end{vmatrix} = 10v(2u + v^{3})\vec{i} - 10v(2u + 4)\vec{j} + 3uv^{2}(2u + 4)\vec{k}$$

Now, find the values of u and v that give the point (15,128,20).

$$15 = u^{2} + 4u - 17 \qquad \Rightarrow \qquad u = -8, \quad u = 4$$

$$128 = u^{2} + uv^{3} \qquad \Rightarrow \qquad \underline{u = -8, \quad v = -2}$$

$$20 = 5v^{2} \qquad \Rightarrow \qquad v = \pm 2$$

Now, evaluate $\vec{r}_u \times \vec{r}_v$ at u=-8 and v=-2: $\vec{r}_u \times \vec{r}_v = 480\vec{i} - 240\vec{j} + 1152\vec{k}$

The equation of the tangent plane is then,

$$480(x-15)-240(y-128)+1152(z-20)=0 \rightarrow 480x-240y+1153z=-480$$

11. First the parameterization : $\vec{r}(x,y) = \langle x, y, 5 - 2x^2 - 2y^2 \rangle$ and *D* is given by,

$$1 = 5 - 2x^2 - 2y^2$$
 \Rightarrow $x^2 + y^2 = 2$ $0 \le \theta \le 2\pi, \ 0 \le r \le \sqrt{2}$

We'll need polar eventually to do the integral based on D. Now all the cross product work...

$$\vec{r}_{x} = \langle 1, 0, -4x \rangle \qquad \vec{r}_{y} = \langle 0, 1, -4y \rangle$$

$$\vec{r}_{x} \times \vec{r}_{y} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & -4x \\ 0 & 1 & -4y \end{vmatrix} = 4x\vec{i} + 4y\vec{j} + \vec{k} \qquad \left\| \vec{r}_{x} \times \vec{r}_{y} \right\| = \sqrt{1 + 16x^{2} + 16y^{2}}$$

The surface area is then,

$$S = \iint_{D} \sqrt{1 + 16x^{2} + 16y^{2}} \, dA = \int_{0}^{2\pi} \int_{0}^{\sqrt{2}} r \sqrt{1 + 16r^{2}} \, dr \, d\theta = \int_{0}^{2\pi} \frac{1}{48} \left(33^{\frac{3}{2}} - 1 \right) d\theta = \boxed{\frac{\pi}{24} \left(33^{\frac{3}{2}} - 1 \right)}$$

12. A sketch of the region *D* is to the right. We already have a parameterization so the cross product work is,

$$\vec{r}_{u} = \langle 2u, 3, 0 \rangle \qquad \vec{r}_{v} = \langle 0, -1, 2 \rangle$$

$$\vec{r}_{u} \times \vec{r}_{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2u & 3 & 0 \\ 0 & -1 & 2 \end{vmatrix} = 6\vec{i} - 4u\vec{j} - 2u\vec{k}$$

$$\|\vec{r}_{u} \times \vec{r}_{v}\| = \sqrt{36 + 16u^{2} + 4u^{2}} = \sqrt{36 + 20u^{2}}$$

It looks like we'll need the following limits for the integral : $0 \le u \le 8$, $0 \le v \le \frac{1}{2}v$. The surface area is,

$$S = \iint_{D} \sqrt{36 + 20u^{2}} \, dA = \int_{0}^{8} \int_{0}^{\frac{1}{2}u} \sqrt{36 + 20u^{2}} \, dv \, du = \int_{0}^{8} \frac{1}{2}u \sqrt{36 + 20u^{2}} \, du$$
$$= \left[\frac{1}{120} \left(1316^{\frac{3}{2}} - 216 \right) = 396.035 \right]$$