Separable Differential Equations

For problems $1 \& 2$ find the solution to the given IVP and determine the interval of validity for the solution. Any approximate answers must be to at least the $4^{\text {th }}$ decimal place and you may need computational aids in finding some of the intervals of validity.

1. $y^{\prime}=\frac{(3+y)^{2}}{1+x} \quad y(0)=12$
2. $y^{\prime}=y\left(5 x^{2}-7 x\right) \quad y(0)=\mathbf{e}^{9} \quad$ You may assume $y>0$ for this problem.
3. Solve the following differential equation and determine the minimum value(s) of the solution. Any approximate answers must be to at least the $4^{\text {th }}$ decimal place.

$$
y^{\prime}=\frac{4-2 x}{7+4 y} \quad y(2)=-6
$$

Modeling, Part I

For problems 4 \& 5 you MUST set up and solve the appropriate IVP(s) in order to receive any credit for the problem. Any decimals must be to at least the $4^{\text {th }}$ decimal place.
4. A 600 gallon tank contains 400 gallons of water with 60 ounces of salt dissolved in it. Water with a salt concentration of $c(t)=5+10 \mathbf{e}^{-\frac{t}{200}}$ ounces/gal is flowing into the tank at a rate of 4 gallons $/ \mathrm{min}$ and a well mixed solution flows out at a rate of 4 gallons $/ \mathrm{min}$. If left to forever, what would be the equilibrium (i.e. what would be the amount of salt in the tank as $t \rightarrow \infty$) amount of salt in the water?
5. A 800 liter tank initially contains 600 liters of water with 150 grams of contamination in the water. Contaminated water with a concentration of 5 grams/liter flows into the tank at a rate of 4 liters $/ \mathrm{hr}$ and a well mixed solution flows out at a rate of 6 liters/hr. This will continue until there is 600 grams of contamination in the tank. At that point in time concentration of the contaminate in the inflow is reduced to 2 grams/liter and the flow rate is increased to 6 liters/hr while the outgoing water is continues to flow out at 6 liters/hr.

Home much of the contaminate is in the tank 50 hours after concentration of the inflow is changed?
6. Take the same situation from \#5 and after that 50 hours the contaminated inflow is turned and pure water now flows into the tank at a rate of 10 liters/hr and the outflow is increased to 8 liters/hr. Set up, but do not solve, an IVP for this new situation.

