1. (3 pts) Here's the IVP's we need for this problem. Note that I'm using a time frame of months here and so all per week quantities will need to be multiplied by 4 to get them into a per month quantity.

$$
\begin{array}{lll}
P^{\prime}=r P & P(0)=300 & P(2)=1200 \\
P^{\prime}=r P+30(4)-40(4)=r P-40 & P(0)=300 &
\end{array}
$$

Solving the first and applying the initial condition gives the following solution which we can then apply the second condition,

$$
P(t)=300 \mathbf{e}^{r t} \quad 1200=300 \mathbf{e}^{2 r} \quad r=\frac{1}{2} \ln (4)=\ln (4)^{\frac{1}{2}}=\ln (2)
$$

The second IVP is now,

$$
P^{\prime}=\ln (2) P-40 \quad P(0)=300
$$

I'll leave it to you to verify that the solution is,

$$
P(t)=\frac{40}{\ln 2}+242.2922 \mathbf{e}^{\ln (2) t}
$$

From this we can see that the insects will survive because everything is positive and the exponential will go to infinity as $t \rightarrow \infty$.
3. (3 pts) Here's the IVP for this case.

$$
v^{\prime}=9.8-\frac{30}{20} v=9.8-\frac{3}{2} v \quad v(0)=0.75
$$

I'll leave it to you to verify the solution to this.

$$
v(t)=6.5333-5.7833 \mathbf{e}^{-\frac{3}{2} t}
$$

To determine when it hits the ground we can set this equal to 5 and solve for t.

$$
5=6.5333-5.7833 \mathbf{e}^{-\frac{3}{2} t} \quad \rightarrow \quad 0.26513=\mathbf{e}^{-\frac{3}{2} t} \quad \Rightarrow \quad t=0.8850
$$

The height function is,

$$
s(t)=\int 6.5333-5.7833 \mathbf{e}^{-\frac{3}{2} t} d t \quad s(0)=0 \quad \Rightarrow \quad s(t)=6.5333 t+3.8556 \mathbf{e}^{-\frac{3}{2} t}-3.8556
$$

The bridge is then $s(0.8850)=2.9487 \mathrm{~m}$ above the ground .
4. (2 pts) The equilibrium solutions are : $y=-8, y=-4$, and $y=0$. From a sketch of the solutions we can see the following classifications.

$$
\begin{array}{ll}
y=0 & : \text { Semi-stable } \\
y=-4: & \text { Asymp. Stable } \\
y=-8 & : \text { Unstable }
\end{array}
$$

6. (2 pts) We just need to run through the formulas using $f(t, y)=y+t^{2}-\sin (y)$. Here's the results for $h=0.4$.

t	2.4	2.8
f_{n}	10.3430134013	17.8871924346
Approx.	11.1372053605	18.2920823344

Here's the results for $h=0.2$.

t	2.2	2.4	2.6	2.8
f_{n}	10.3430134013	13.5599105577	18.2479656363	21.9159513489
Approx.	9.0686026803	11.7805847918	15.4301779190	19.8133681888

For $h=0.4$ we have $y(2.8) \approx 18.2920823344$ and for $h=0.2$ we have $y(2.8) \approx 19.8133681888$.

Not Graded

2. The new IVP that we'll need for this new situation is,

$$
P_{2}^{\prime}=\ln (2) P_{2}+30(4)-40(4)-120(4)=\ln (2) P_{2}-520 \quad P_{2}(1.5)=P_{1}(1.5)=743.0136
$$

I'll let you verify that the solution to this IVP is,

$$
P(t)=\frac{520}{\ln 2}-2.5413 \mathrm{e}^{\ln (2) t}
$$

So, it looks like the insects will now die out (although just barely is seems as c is only just switched over to negative!). Setting equal to zero and solving gives that they will die at $t=8.2056$. So, they will die out after about 33 weeks (or so....).
5. The equilibrium solutions are : $y=0$ and $y=2$. From a sketch of the solutions we can see the following classifications.

$$
\begin{aligned}
& y=2: \text { Asymp. Stable } \\
& y=0: \text { Unstable }
\end{aligned}
$$

