2. (2 pts) I'll leave it to you to verify that $y_{c}(t)=c_{1}+c_{2} \mathbf{e}^{7 t}$. The guess for the particular solution and its derivatives are,

$$
Y_{P}=A \mathbf{e}^{-2 t}+B t \mathbf{e}^{7 t} \quad Y_{P}^{\prime}=-2 A \mathbf{e}^{-2 t}+B \mathbf{e}^{7 t}+7 B t \mathbf{e}^{7 t} \quad Y_{P}^{\prime \prime}=4 A \mathbf{e}^{-2 t}+14 B \mathbf{e}^{7 t}+49 B t \mathbf{e}^{7 t}
$$

Note that we need to tack a t onto the guess for the second exponential because it is part of the complimentary solution. Plugging this into the differential equation and simplifying gives,

$$
18 A \mathbf{e}^{-2 t}+7 B \mathbf{e}^{7 t}=6 \mathbf{e}^{-2 t}-3 \mathbf{e}^{7 t}
$$

Setting coefficients equal and solving gives,

$$
\begin{aligned}
\mathbf{e}^{-2 t}: 18 A & =6 \\
\mathbf{e}^{7 t}: 7 B & =-3
\end{aligned} \Rightarrow \quad \begin{aligned}
& A=\frac{1}{3} \\
& B=-\frac{3}{7}
\end{aligned}
$$

The general solution is then,

$$
y(t)=c_{1}+c_{2} \mathbf{e}^{7 t}+\frac{1}{3} \mathbf{e}^{-2 t}-\frac{3}{7} \mathbf{e}^{7 t}
$$

5. (2 pts) I'll leave it to you to verify that $y_{c}(t)=c_{1} \cos (t)+c_{2} \sin (t)$. The guess for the particular solution is,

$$
Y_{P}=(A t+B) \mathbf{e}^{9 t}+t\left(C t^{2}+D t+E\right) \cos (t)+t\left(F t^{2}+G t+H\right) \sin (t)
$$

Note that we needed to tack a t onto the last two portions to prevent them from being in the complimentary solution.
7. (2 pts) I'll leave it to you to verify that $y_{c}(t)=c_{1} \cos \left(\frac{t}{3}\right)+c_{2} \sin \left(\frac{t}{3}\right)$. Here's the information we need for Variation of Parameters.

$$
W=\left|\begin{array}{cc}
\cos \left(\frac{t}{3}\right) & \sin \left(\frac{t}{3}\right) \\
-\frac{1}{3} \sin \left(\frac{t}{3}\right) & \frac{1}{3} \cos \left(\frac{t}{3}\right)
\end{array}\right|=\frac{1}{3} \cos ^{2}\left(\frac{t}{3}\right)+\frac{1}{3} \sin ^{2}\left(\frac{t}{3}\right)=\frac{1}{3} \quad g(t)=\frac{10}{9}
$$

Don't forget to divide by the 9 to get a coefficient of 1 on the second derivative term. The particular solution is then,

$$
\begin{aligned}
Y_{P} & =-\cos \left(\frac{t}{3}\right) \int \frac{\frac{10}{9} \sin \left(\frac{t}{3}\right)}{\frac{1}{3}} d t+\sin \left(\frac{t}{3}\right) \int \frac{\frac{10}{9} \cos \left(\frac{t}{3}\right)}{\frac{1}{3}} d t \\
& =10 \cos ^{2}\left(\frac{t}{3}\right)+10 \sin ^{2}\left(\frac{t}{3}\right)=\underline{10}
\end{aligned}
$$

The general solution is,

$$
y(t)=c_{1} \cos \left(\frac{t}{3}\right)+c_{2} \sin \left(\frac{t}{3}\right)+10
$$

Now apply the initial conditions.

$$
\begin{aligned}
-8 & =y(0)=c_{1}+10 \\
7 & =y^{\prime}(0)=\frac{1}{3} c_{2}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& c_{1}=-18 \\
& c_{2}
\end{aligned}=21
$$

The actual solution is then,

$$
y(t)=-18 \cos \left(\frac{t}{3}\right)+21 \sin \left(\frac{t}{3}\right)+10
$$

8. ($\mathbf{2} \mathbf{~ p t s) ~ I ' l l ~ b e ~ l e a v i n g ~ i t ~ t o ~ y o u ~ t o ~ v e r i f y ~ m o s t ~ o f ~ t h e ~ s o l u t i o n ~ w o r k . ~ T h e ~ k e y ~ q u a n t i t i e s ~ f o r ~ t h e ~ p r o b l e m ~}$ are,

$$
m=\frac{18}{32}=\frac{9}{16} \quad L=\frac{8}{12}=\frac{2}{3} \quad k=\frac{18}{2 / 3}=27 \quad \omega_{0}=\sqrt{\frac{27}{9 / 16}}=\sqrt{48}=4 \sqrt{3}=6.9282
$$

The IVP is,

$$
\frac{9}{16} u^{\prime \prime}+27 u=0 \quad u(0)=-\frac{2}{12}=-\frac{1}{6} \quad u^{\prime}(0)=-\frac{8}{12}=-\frac{2}{3}
$$

The general solution is,

$$
u(t)=c_{1} \cos (4 \sqrt{3} t)+c_{2} \sin (4 \sqrt{3} t)
$$

Applying the initial conditions gives,

$$
u(t)=-\frac{1}{6} \cos (4 \sqrt{3} t)-\frac{1}{6 \sqrt{3}} \sin (4 \sqrt{3} t)
$$

Now, reduce down to a single cosine.

$$
R=\sqrt{\left(-\frac{1}{6}\right)^{2}+\left(-\frac{1}{6 \sqrt{3}}\right)^{2}}=\frac{1}{3 \sqrt{3}}=0.1925 \quad \delta_{1}=\tan ^{-1}\left(\frac{-\frac{1}{6 \sqrt{3}}}{-\frac{1}{6}}\right)=0.5236 \quad \delta_{2}=\delta_{1}+\pi=3.6652
$$

In this case the second angle is the correct one and so the single cosine form of the solution is,

$$
u(t)=0.1925 \cos (4 \sqrt{3} t-3.6652)
$$

9. (2 pts) I'll be leaving it to you to verify most of the solution work. The key quantities for the problem are,

$$
m=0.8 \quad L=0.25 \quad k=\frac{(0.8)(9.8)}{0.25}=31.36 \quad \gamma=\frac{6}{0.3}=20 \quad \gamma_{C R}=2 \sqrt{(31.36)(0.8)}=10.0176
$$

We have over damping in this case. The IVP is then,

$$
0.8 u^{\prime \prime}+20 u^{\prime}+31.36 u=0 \quad u(0)=0 \quad u^{\prime}(0)=0.1
$$

The general solution is,

$$
u(t)=c_{1} \mathbf{e}^{-23.3190 t}+c_{2} \mathbf{e}^{-1.6810 t}
$$

Applying the initial conditions gives,

$$
u(t)=-0.004621 \mathbf{e}^{-23.3190 t}+0.004621 \mathbf{e}^{-1.6810 t}
$$

Not Graded

1. I'll leave it to you to verify that $y_{c}(t)=c_{1}+c_{2} \mathbf{e}^{7 t}$. The guess for the particular solution and its derivatives are,

$$
\begin{gathered}
Y_{P}=t(A t+B)+D \cos (2 t)+E \sin (2 t) \quad Y_{P}^{\prime}=2 A t+B-2 D \sin (2 t)+2 E \cos (2 t) \\
Y_{P}^{\prime \prime}=2 A-4 D \cos (2 t)-4 E \sin (2 t)
\end{gathered}
$$

Note that we need to tack a t onto the guess for the polynomial because the constant in the guess is part of the complimentary solution. Plugging this into the differential equation and simplifying gives,

$$
-7 A+2 B-14 B t+(-4 D-14 E) \cos (2 t)+(14 D-4 E) \sin (2 t)=5 t-1+\cos (2 t)
$$

Setting coefficients equal and solving gives,

$$
\begin{array}{rlrl}
t^{1}: & -14 A & =5 \\
t^{0} & : & -7 A+2 B & =-1 \\
\cos (2 t): & -4 D-14 E & =1 \\
\sin (2 t) & 14 D-4 E & =0 & \\
& & A=-\frac{5}{14} \\
B & =\frac{2}{49} \\
D & =-\frac{1}{53} \\
E & =-\frac{7}{106}
\end{array}
$$

The general solution is then,

$$
y(t)=c_{1}+c_{2} \mathbf{e}^{7 t}-\frac{5}{14} t^{2}+\frac{2}{49} t-\frac{1}{53} \cos (2 t)-\frac{7}{106} \sin (2 t)
$$

3. I'll leave it to you to verify that $y_{c}(t)=c_{1} \mathbf{e}^{2 t}+c_{2} t \mathbf{e}^{2 t}$. The guess for the particular solution and its derivatives are,

$$
Y_{P}=A t^{2} \mathbf{e}^{2 t} \quad Y_{P}^{\prime}=2 A t \mathbf{e}^{2 t}+2 A t^{2} \mathbf{e}^{2 t} \quad Y_{P}^{\prime \prime}=2 A \mathbf{e}^{2 t}+8 A t \mathbf{e}^{2 t}+4 A t^{2} \mathbf{e}^{2 t}
$$

Note that we needed to tack a t^{2} onto the guess so we could get a guess that did not end up in the complimentary solution. Plugging this into the differential equation and simplifying gives,

$$
2 A \mathbf{e}^{2 t}=7 \mathbf{e}^{2 t}
$$

Setting coefficients equal and solving gives,

$$
2 A=7 \quad \Rightarrow \quad A=\frac{7}{2}
$$

The general solution is,

$$
y(t)=c_{1} \mathbf{e}^{2 t}+c_{2} t \mathbf{e}^{2 t}+\frac{7}{2} t^{2} \mathbf{e}^{2 t}
$$

Now apply the initial conditions.

$$
\begin{aligned}
& 12=y(0)=c_{1} \\
& -1=y^{\prime}(0)=2 c_{1}+c_{2}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& c_{1}=12 \\
& c_{2}=-25
\end{aligned}
$$

The actual solution is then,

$$
y(t)=12 \mathbf{e}^{2 t}-25 t \mathbf{e}^{2 t}+\frac{7}{2} t^{2} \mathbf{e}^{2 t}
$$

4. I'Il leave it to you to verify that $y_{c}(t)=c_{1} \mathbf{e}^{4 t} \cos (3 t)+c_{2} \mathbf{e}^{4 t} \sin (3 t)$. The guess for the particular solution is,

$$
Y_{P}=\left(A t^{2}+B t+C\right) \mathbf{e}^{4 t}+(D t+E) \cos (3 t)+(F t+G) \sin (3 t)+t \mathrm{e}^{4 t}(H \cos (3 t)+I \sin (3 t))
$$

Note that we needed to tack a t onto the last guess to prevent that part from being in the complimentary solution.
6. I'll leave it to you to verify that $y_{c}(t)=c_{1} \mathbf{e}^{-2 t}+c_{2} \mathbf{e}^{4 t}$. Here's the information we need for Variation of Parameters.

$$
W=\left|\begin{array}{cc}
\mathbf{e}^{-2 t} & \mathbf{e}^{4 t} \\
-2 \mathbf{e}^{-2 t} & 4 \mathbf{e}^{4 t}
\end{array}\right|=6 \mathbf{e}^{2 t} \quad g(t)=\mathbf{e}^{4 t}-3 \mathbf{e}^{-t}
$$

The particular solution is then,

$$
\begin{aligned}
Y_{P} & =-\mathbf{e}^{-2 t} \int \frac{\mathbf{e}^{4 t}\left(\mathbf{e}^{4 t}-3 \mathbf{e}^{-t}\right)}{6 \mathbf{e}^{2 t}} d t+\mathbf{e}^{4 t} \int \frac{\mathbf{e}^{-2 t}\left(\mathbf{e}^{4 t}-3 \mathbf{e}^{-t}\right)}{6 \mathbf{e}^{2 t}} d t \\
& =-\frac{1}{6} \mathbf{e}^{-2 t} \int \mathbf{e}^{6 t}-3 \mathbf{e}^{t} d t+\frac{1}{6} \mathbf{e}^{4 t} \int 1-3 \mathbf{e}^{-5 t} d t=\frac{1}{6}\left[t \mathbf{e}^{4 t}-\frac{1}{6} \mathbf{e}^{4 t}+\frac{18}{5} \mathbf{e}^{-t}\right]
\end{aligned}
$$

The general solution is then,

$$
y(t)=c_{1} \mathbf{e}^{-2 t}+c_{2} \mathbf{e}^{4 t}+\frac{1}{6}\left[t \mathbf{e}^{4 t}-\frac{1}{6} \mathbf{e}^{4 t}+\frac{18}{5} \mathbf{e}^{-t}\right]
$$

10. Taking what we can from \#8 we have the following,

$$
\frac{9}{16} u^{\prime \prime}+27 u=0 \quad u(0)=-\frac{1}{6} \quad u^{\prime}(0)=-\frac{2}{3} \quad u_{c}(t)=c_{1} \cos (4 \sqrt{3} t)+c_{2} \sin (4 \sqrt{3} t)
$$

Note that because $\omega=2 \neq 4 \sqrt{3}=\omega_{0}$ we will NOT have resonance. Undetermined Coefficients will probably be the easiest for a particular solution so,

$$
U_{P}=A \cos (2 t)+B \sin (2 t) \quad \rightarrow \quad \frac{99}{4} A \cos (2 t)+\frac{99}{4} B \sin (2 t)=9 \cos (2 t)+4 \sin (2 t)
$$

Setting coefficients equal and solving gives $A=\frac{4}{11}, B=\frac{16}{99}$. The general solution is then,

$$
u(t)=c_{1} \cos (4 \sqrt{3} t)+c_{2} \sin (4 \sqrt{3} t)+\frac{4}{11} \cos (2 t)+\frac{16}{99} \sin (2 t)
$$

Applying the initial conditions gives,

$$
u(t)=-\frac{35}{66} \cos (4 \sqrt{3} t)-\frac{49}{198 \sqrt{3}} \sin (4 \sqrt{3} t)+\frac{4}{11} \cos (2 t)+\frac{16}{99} \sin (2 t)
$$

Now, reduce the first set of sine/cosine down to a single cosine.

$$
R=\sqrt{\left(-\frac{35}{66}\right)^{2}+\left(-\frac{49}{198 \sqrt{3}}\right)^{2}}=5.9608 \quad \delta_{1}=\tan ^{-1}\left(\frac{-49 / 198 \sqrt{3}}{-35666}\right)=0.2632 \quad \delta_{2}=\delta_{1}+\pi=3.4048
$$

In this case the second angle is correct. Next reduce the second set of sine/cosine.

$$
R=\sqrt{\left(\frac{4}{11}\right)^{2}+\left(\frac{16}{99}\right)^{2}}=0.3979 \quad \delta_{1}=\tan ^{-1}\left(\frac{16 / 99}{4 / 11}\right)=0.4182 \quad \delta_{2}=\delta_{1}+\pi=3.5598
$$

Here the first angle is correct. The solution is then,

$$
u(t)=5.9608 \cos (4 \sqrt{3} t-3.4048)+0.3979 \cos (2 t-0.4182)
$$

11. Taking what we can from \#8 we have the following,

$$
0.8 u^{\prime \prime}+31.36 u=0 \quad u(0)=0 \quad u^{\prime}(0)=0.1 \quad \underline{u_{c}(t)=c_{1} \mathbf{e}^{-23.3190 t}+c_{2} \mathrm{e}^{-1.6810 t}}
$$

Undetermined Coefficients will probably be the easiest for a particular solution so,

$$
U_{P}=A \cos (4 t)+B \sin (4 t) \rightarrow(18.56 A+80 B) A \cos (4 t)+(18.56 B-80 A) B \sin (4 t)=11 \sin (4 t)
$$

Setting coefficients equal and solving gives $A=-0.1305, B=0.0303$. The general solution is then,

$$
u(t)=c_{1} \mathbf{e}^{-23.3190 t}+c_{2} \mathbf{e}^{-1.6810 t}-0.1305 \cos (2 t)+0.0303 \sin (2 t)
$$

Applying the initial conditions gives,

$$
u(t)=-0.009162 \mathbf{e}^{-23.3190 t}+0.1396 \mathbf{e}^{-1.6810 t}-0.1305 \cos (2 t)+0.0303 \sin (2 t)
$$

Now reduce the sine/cosine down to a single cosine.
$R=\sqrt{(-0.1305)^{2}+(0.0303)^{2}}=0.1340 \quad \delta_{1}=\tan ^{-1}\left(\frac{0.0303}{-0.1305}\right)=-0.2281 \quad \delta_{2}=\delta_{1}+\pi=2.9135$
In this case the second angle is correct. The solution is then,

$$
u(t)=-0.009162 \mathbf{e}^{-23.3190 t}+0.1396 \mathbf{e}^{-1.6810 t}-0.1340 \cos (2 t-2.9135)
$$

