IVP's with Step Functions

Use Laplace transforms to solve the given IVP. In the partial fraction stage all quadratics that can be factored with integer coefficients must be factored.

1.
$$y'' - 8y' + 16y = 7u_1(t)e^{4t-4}$$

$$y(0) = 0, y'(0) = 2$$

2.
$$3y'' - y' = u_7(t) - 4u_3(t)e^{2t-6}$$

$$y(0) = 0, y'(0) = 0$$

3.
$$y'' - y' - 2y = e^{-3t} + u_4(t)e^{12-3t}$$

$$y(0) = 2$$
, $y'(0) = 0$

Dirac-Delta Function

Use Laplace transforms to solve the given IVP. In the partial fraction stage all quadratics that can be factored with integer coefficients must be factored.

4.
$$9y'' - 6y' + 10y = 6\delta(t-1)$$

$$y(0) = -4, y'(0) = 1$$

5.
$$y'' + 2y' - 8y = 7\delta(t-3) + 8u_{10}(t)$$

$$y(0) = 0, y'(0) = 0$$

Convolution Integrals

6. Find the Laplace Transform of $f(t) = \int_0^t \mathbf{e}^{2t-2\tau} \cos(\frac{1}{2}\tau) d\tau$.

7. Use a convolution integral (make sure you evaluate the integral!) to find the inverse transform of

$$H(s) = \frac{3}{(s+2)(s-7)}$$

8. Find the solution to the following IVP in terms of g(t).

$$y'' - 8y' + 25y = g(t)$$

$$y(0) = -9, y'(0) = 0$$