Arc Length

For problems $1 \& 2$ find the length of the given curve.

1. $y=(2 x+3)^{\frac{3}{2}}-1,0 \leq x \leq 2$
2. $x=1+(y+1)^{2}, 1 \leq x \leq 5 \quad$ For purposes of dealing with limits you may assume that $y \geq-1$ for this problem.
3. Set up, but do not evaluate an integral that will give the length of the following curve. Yes, I realize that there are no limits given, you will need to determine them. I also realize that this function is not given in the same form as the previous two, dealing with that is part of the problem.

$$
9 x^{2}+\frac{y^{2}}{36}=1
$$

Surface Area

For problems $4 \& 5$ find the surface area of the region obtained by rotating the function about the given axis.
4. $y=4-2 x^{2}, 0 \leq x \leq 6$ about the y-axis.
5. $y=\sin (3 x), 0 \leq x \leq \pi$ about the x-axis.
6. Set up, but do not evaluate, the integral that will give the surface area obtained by rotating $x=y^{2} \mathbf{e}^{7 y}$ $0 \leq y \leq 1$ about,
(a) the x-axis.
(b) the y-axis

Parametric Equations and Curves

For problems $7 \& 8$ do each of the following.
(a) Eliminate the parameter for the parametric equations and sketch the parametric curve clearly indicating the direction in which the curve is traced out as t increases.
(b) Determine what (if any) limits exist on the values of x and y.
(c) If the curve is traced out more than once give a range of t 's for which the curve is traced out exactly once. Tracing out a curve exactly once means that no portion of the curve will be retraced (in either direction) in the range of t 's given.
7. $x=t^{2}+2 t, y=4-t$
8. $x=6 \sin (3 t), y=\sqrt{2+2 \cos ^{2}(3 t)}$

For problems 9 \& 10 suppose that a particle is tracing out a path given by the following parametric equations. Completely describe the motion of the particle as t varies in the given interval. This means that you need to do (a) - (c) from the previous problems above as well as,
(d) If any portion of the curve is retraced determine how many times the path is traced out.
9. $x=\ln \left(t^{2}\right), y=\frac{1}{[\ln (t)]^{2}}, \quad 2 \leq t \leq 10$
10. $x=4-2 \cos \left(\frac{t}{4}\right), y=6+4 \sin ^{2}\left(\frac{t}{4}\right),-32 \pi \leq t \leq 80 \pi$

