2. (2 pts) To do this a quick rewrite on the sequence terms is needed then we'll see that the sequence converges to a value of $\ln \left(\frac{3}{7}\right)$.

$$
\lim _{n \rightarrow \infty}[\ln (3 n+9)-\ln (7 n+2)]=\lim _{n \rightarrow \infty} \ln \left(\frac{3 n+9}{7 n+2}\right)=\ln \left(\frac{3}{7}\right)
$$

4. (2 pts) For this sequence we'll need to use the fact from class to see that it converges to a value of 0 .

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} n^{2}}{4 n^{3}+11}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{4 n^{3}+11}=0 \text { so by Fact from class we get } \lim _{n \rightarrow \infty} \frac{(-1)^{n} n^{2}}{4 n^{3}+11}=0
$$

6. (2 pts) We'll need the increasing/decreasing information first here and that will require some Calc I.

$$
f(x)=\frac{1+2 x}{500,000+8 x^{2}} \quad f^{\prime}(x)=\frac{-16\left(x^{2}+x-62,500\right)}{\left(1,000,000+2 x^{2}\right)^{2}}
$$

I'll leave it to you to verify that we get two critical points we get by setting the numerator (and hence the derivative) equal to zero and solving are $x=-250.5$ and $x=249.5$ and that the derivative is positive in the range $0 \leq x<249.5$ and negative in the range $x>249.5$ and so the function will both increase and decrease for $x \geq 1$ and so the sequence is not monotonic.

For bounds we can see that all the sequence terms are positive and so the sequence will be bounded below by 0 . Also, from our increasing/decreasing work above we know that the function will increase until $x=249.5$ and then decrease. This generally means that either $a_{249}=0.000501$ or $a_{250}=0.000501$ will be the largest sequence term, although in this case they are the same. From this we can see that the sequence will be bounded above by 0.000501 (or any larger number of course). The sequence is therefore bounded.
11. (2 pts) We need the exponent to be $n-1$ because the series starts at $n=1$.

$$
\sum_{n=1}^{\infty} 3^{1+2 n} 2^{1-4 n}=\sum_{n=1}^{\infty} \frac{3^{2 n} 3^{1}}{2^{4 n} 2^{-1}}=\sum_{n=1}^{\infty} \frac{9^{n-1} 913}{16^{n-1} 16^{1} 2^{-1}}=\sum_{n=1}^{\infty} \frac{27}{8}\left(\frac{9}{16}\right)^{n-1}
$$

Okay, because we see $|r|=\frac{9}{16}<1$ and so the series converges and its value is,

$$
\sum_{n=1}^{\infty} 3^{1+2 n} 2^{1-4 n}=\frac{\frac{27}{8}}{1-\frac{9}{16}}=\frac{\frac{27}{8}}{\frac{7}{16}}=\frac{54}{7}
$$

14. (2 pts) This looks like a telescoping series. I'll leave it to you to verify the partial fractions. The partial sum is,

$$
\begin{aligned}
s_{n}= & \sum_{i=2}^{n} \frac{3}{i^{2}-1}=\sum_{i=2}^{n}\left[\frac{\frac{3}{2}}{i-1}-\frac{\frac{3}{2}}{i+1}\right] \\
= & \left(\frac{\frac{3}{2}}{1}-\frac{\frac{3}{2}}{\beta}\right)+\left(\frac{\frac{3}{2}}{2}-\frac{\frac{3}{4}}{4}\right)+\left(\frac{\frac{3}{2}}{3}-\frac{\frac{3}{n}}{5}\right)+\left(\frac{\frac{3}{n}}{4}-\frac{\frac{3}{2}}{6}\right)+\left(\frac{\sqrt[3]{n}}{5}-\frac{3}{2}\right)+\cdots \\
& \quad \cdots+\left(\frac{\frac{3}{2}}{n-5}-\frac{\frac{3}{2}}{n-3}\right)+\left(\frac{\frac{3}{2}}{n-4}-\frac{\sqrt{\frac{3}{2}}}{n-2}\right)+\left(\frac{\frac{3}{2}}{n-3}-\frac{\frac{3}{2}}{n-1}\right)+\left(\frac{\frac{3}{2}}{n-2}-\frac{\frac{3}{2}}{n}\right)+\left(\frac{\frac{3}{2}}{n-1}-\frac{\frac{3}{2}}{n+1}\right) \\
& =\frac{\frac{3}{2}}{1}+\frac{\frac{3}{2}}{2}-\frac{\frac{3}{2}}{n}-\frac{\frac{3}{2}}{n+1}=\frac{9}{4}-\frac{\frac{3}{2}}{n}-\frac{\frac{3}{2}}{n+1}
\end{aligned}
$$

Now,

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\frac{9}{4}-\frac{\frac{3}{2}}{n}-\frac{\frac{3}{2}}{n+1}\right)=\frac{9}{4}
$$

The limit of the partial sums exists and is finite and so the series will converge and its value will be $\frac{9}{4}$.

Not Graded

1. The sequence converges to a value of $-\frac{3}{2}$

$$
\lim _{n \rightarrow \infty} \frac{6 n^{4}-9 n^{2}+12}{3-17 n-8 n^{3}}=-\frac{12}{8}=-\frac{3}{2}
$$

3. First write out the first few terms of the series and we'll see that the sequence diverges.

$$
\{\cos (n \pi)\}_{n=0}^{\infty}=\{1,-1,1,-1,1,-1, \cdots\}=\left\{(-1)^{n}\right\}_{n=0}^{\infty} \quad \lim _{n \rightarrow \infty}(-1)^{n}-\text { Does Not Exist }
$$

5. Let's first get the increasing/decreasing information. To do this we'll need to do some Calc I.

$$
f(x)=\frac{1-x}{3-2 x} \quad f^{\prime}(x)=\frac{-1}{(3-2 x)^{2}}
$$

We can see that the derivative will always be negative for $x \geq 2$ and therefore the function, and hence the sequence, will be decreasing. The sequence is therefore also monotonic. Now, because we know that the sequence is decreasing the first term in the sequence will be the largest and so the sequence will be bounded above by 1 . Also notice that for $n \geq 2$ the numerator is negative and the denominator is negative and so each sequence term will be positive and so the sequence is bounded below by 0 . This also means that the sequence is bounded.
7. (a) $\sum_{n=0}^{\infty} \frac{1-n}{1+5^{n}}=\frac{1}{2}+0+\sum_{n=2}^{\infty} \frac{1-n}{1+5^{n}}$
(b) $0.439174=\frac{1}{2}+\sum_{n=2}^{\infty} \frac{1-n}{1+5^{n}} \quad \Rightarrow \quad \sum_{n=2}^{\infty} \frac{1-n}{1+5^{n}}=-0.060826$
8. $\lim _{n \rightarrow \infty} d_{n}=\lim _{n \rightarrow \infty} \frac{6 n+8 n^{2}}{9-n^{2}}=-8$
(a) From the limit above we can see that the sequence converges to a value of-8.
(b) From the limit above and the Divergence Test we can see that the series will diverge.

Remember that all we need for a sequence to converge is for the limit of the terms to exist and be a finite value (which we have here). Also, in order for a series to converge the limit of the terms MUST be zero and because we don't have that here the series can't converge.
9. $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{3+\mathbf{e}^{-2 n}}{7-6 \mathbf{e}^{-2 n}}=\frac{3}{7}$. Because the limit of the partial sums exists and is finite the series which generated the partial sums must converge and have a value of $\frac{3}{7}$.
10. $\lim _{n \rightarrow \infty} 12=12 \neq 0$ so by the Divergence Test the series must diverge.
12. The only difference from the first problem is the starting point and so we know that it will converge because the value of r is the same. To get its value all we need to do is strip out the first three terms and use the value from the first problem.

$$
\begin{aligned}
& \frac{54}{7}=\sum_{n=1}^{\infty} 3^{1+2 n} 2^{1-4 n}=3^{3} 2^{-3}+3^{5} 2^{-7}+3^{7} 2^{-11}+\sum_{n=4}^{\infty} 3^{1+2 n} 2^{1-4 n} \\
&=\frac{8379}{2048}+\sum_{n=4}^{\infty} 3^{1+2 n} 2^{1-4 n} \Rightarrow \quad \sum_{n=4}^{\infty} 3^{1+2 n} 2^{1-4 n}=\frac{51939}{14336}
\end{aligned}
$$

13. This is a harmonic series and so will diverge. Remember that it doesn't have to start at $n=1$ to be harmonic. Also we can factor a $-\frac{7}{3}$ out of the series to see that this really is harmonic.
