Vectors - The Basics

1. Explain the difference between $(-2,4)$ and $\langle-2,4\rangle$. Illustrate the difference with a sketch.

Vector Arithmetic

For problems 2 \& 3 find $\|\vec{a}\|, 7 \vec{b}$ and $4 \vec{b}-6 \vec{a}$.
2. $\vec{a}=\langle-5,2\rangle \quad \vec{b}=\langle-3,-10\rangle$
3. $\vec{a}=8 \vec{i}-2 \vec{j}+\vec{k} \quad \vec{b}=7 \vec{j}-4 \vec{k}$
4. Find a unit vector that is in
(a) the same direction as $\vec{w}=\langle 9,0,-7\rangle$
(b) the opposite direction as $\vec{v}=2 \vec{i}+3 \vec{j}-10 \vec{k}$

Dot Product

For problems 5 \& 6 compute $\vec{a} \cdot \vec{b}$.
5. $\vec{a}=\langle-1,2,6\rangle, \quad \vec{b}=9 \vec{i}+4 \vec{j}+2 \vec{k}$
6. $\|\vec{a}\|=14,\|\vec{b}\|=3$ and the angle between \vec{a} and \vec{b} is $\theta=\frac{\pi}{6}$.

For problems 7 \& 8 find the angle between the two vectors and determine if the two vectors are parallel, orthogonal or neither.
7. $\vec{p}=\langle 4,-2,1\rangle, \quad \vec{q}=\langle 15,7,-3\rangle$
8. $\vec{x}=2 \vec{i}-2 \vec{j}+3 \vec{k}, \vec{y}=-\vec{i}+5 \vec{j}+4 \vec{k}$

For problems $9 \& 10$ find the vector projection of \vec{b} onto \vec{a}.
9. $\vec{a}=\langle 0,2,-1\rangle, \quad \vec{b}=\langle 1,-2,-5\rangle$
10. $\vec{a}=\langle 1,-2,-5\rangle, \quad \vec{b}=\langle 0,2,-1\rangle$

Cross Product

11. Find $\vec{v} \times \vec{w}$ and $\vec{w} \times \vec{v}$ for $\vec{v}=\langle 2,-6,1\rangle$ and $\vec{w}=\langle 0,1,-1\rangle$
12. Find a vector that is orthogonal to the plane containing $(9,0,1),(-1,1,4)$ and $(7,0,4)$.
13. Determine if $\langle 3,0,0\rangle,\langle 1,-4,2\rangle$ and $\langle 2,-4,1\rangle$ all lie in the same plane.
