Vectors – The Basics

1. Explain the difference between (-2,4) and $\langle -2,4\rangle$. Illustrate the difference with a sketch.

Vector Arithmetic

For problems 2 & 3 find $\|\vec{a}\|$, $7\vec{b}$ and $4\vec{b}-6\vec{a}$.

2.
$$\vec{a} = \langle -5, 2 \rangle$$
 $\vec{b} = \langle -3, -10 \rangle$

3.
$$\vec{a} = 8\vec{i} - 2\vec{j} + \vec{k}$$
 $\vec{b} = 7\vec{j} - 4\vec{k}$

- 4. Find a unit vector that is in
 - (a) the same direction as $\vec{w} = \left<9,0,-7\right>$
 - (b) the opposite direction as $\vec{v} = 2\vec{i} + 3\vec{j} 10\vec{k}$

Dot Product

For problems 5 & 6 compute $\vec{a} \cdot \vec{b}$.

5.
$$\vec{a} = \langle -1, 2, 6 \rangle$$
, $\vec{b} = 9\vec{i} + 4\vec{j} + 2\vec{k}$

6.
$$\|\vec{a}\| = 14$$
, $\|\vec{b}\| = 3$ and the angle between \vec{a} and \vec{b} is $\theta = \frac{\pi}{6}$.

For problems 7 & 8 find the angle between the two vectors and determine if the two vectors are parallel, orthogonal or neither.

7.
$$\vec{p} = \langle 4, -2, 1 \rangle, \ \vec{q} = \langle 15, 7, -3 \rangle$$

8.
$$\vec{x} = 2\vec{i} - 2\vec{j} + 3\vec{k}$$
, $\vec{y} = -\vec{i} + 5\vec{j} + 4\vec{k}$

For problems 9 & 10 find the vector projection of $\, \vec{b} \,$ onto $\, \vec{a} \,$.

9.
$$\vec{a} = \langle 0, 2, -1 \rangle, \ \vec{b} = \langle 1, -2, -5 \rangle$$

10.
$$\vec{a} = \langle 1, -2, -5 \rangle, \ \vec{b} = \langle 0, 2, -1 \rangle$$

Cross Product

11. Find
$$\vec{v} \times \vec{w}$$
 and $\vec{w} \times \vec{v}$ for $\vec{v} = \langle 2, -6, 1 \rangle$ and $\vec{w} = \langle 0, 1, -1 \rangle$

- 12. Find a vector that is orthogonal to the plane containing (9, 0, 1), (-1, 1, 4) and (7, 0, 4).
- 13. Determine if $\langle 3,0,0 \rangle$, $\langle 1,-4,2 \rangle$ and $\langle 2,-4,1 \rangle$ all lie in the same plane.