Math 2415

Differentials

1. Find the differential for the function $u = \mathbf{e}^{\frac{2x}{y}} + \sqrt{z}\sin(xy)$

Chain Rule

2.

Use the Chain Rule to find
$$\frac{dz}{dq}$$
 given that,
 $z = 2v + x^2w^3 - y^2$ $x = 2q^4$ $y = \ln(7-q)$ $v = \tan(2q)$ $w = 4q$

3. Use the Chain Rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ given that, $w = x^2 \cos(2y) - z^3 + y^2$, $x = t^5$, $y = se^{6t}$, $z = p^2$, $p = s^2 t^3$

4. Use the Chain Rule to find formulas for $\frac{\partial w}{\partial p}$ and $\frac{\partial w}{\partial q}$ given that,

$$w = w(x, y, z) \qquad x = x(s, t) \qquad y = y(s, p) \qquad z = z(q) \qquad s = s(p) \qquad t = t(p, q)$$

5. Use the Chain Rule to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for $y^3 + e^{z^2} = z \tan(4-x)$

Directional Derivatives

6. Find ∇f and the directional derivative for $f(x, y) = y^2 \sin(x^2 y)$ in the direction of $\vec{v} = \langle 5, -3 \rangle$ at the point (-2, 4).

7. Find the directional derivative of $f(x, y, z) = 4y e^{-x^2} + \frac{8z}{y^2}$ in the direction of $\vec{v} = \langle 3, 2, -1 \rangle$.

8. Find the maximum rate of change of $f(x, y, z) = \frac{2x}{y} - \frac{y}{2z}$ at the point $(-7, -1, \frac{1}{2})$ and the direction in which it occurs.

9. Given that
$$\vec{u} = \left\langle \frac{3}{5}, -\frac{4}{5} \right\rangle$$
, $\vec{v} = \left\langle -\frac{2}{\sqrt{13}}, -\frac{3}{\sqrt{13}} \right\rangle$, $\vec{w} = \left\langle \frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}} \right\rangle$, $D_{\vec{u}}f(7,8) = \frac{27}{10}$ and $D_{\vec{v}}f(7,8) = \frac{8}{\sqrt{13}}$ determine the value of $D_{\vec{w}}f(2,1)$.