Iterated Integrals

For problems 1-3 evaluate the following integrals.

1. $\int_{1}^{-2} \int_{0}^{1} x^{3} y^{4} \mathbf{e}^{x^{2} y^{5}} d y d x$
2. $\iint_{R} 6 y \cos ^{2}(4 x)+\frac{12 y^{3} x^{2}}{y^{4}+2} d A, \quad R=[-1,0] \times[0,3]$
3. $\iint_{R} x \sin (4 y-x) d A, \quad R=[-2,0] \times[0,3]$

Double Integrals over General Regions

For problems 4-6 evaluate the following integrals.
4. $\int_{0}^{2} \int_{2 x+1}^{x^{3}} 3+20 y^{3} d y d x$
5. $\iint_{D} y^{4} \mathbf{e}^{2+x^{4}} d A$,
$D=\left\{(x, y) \mid 0 \leq y \leq \sqrt[5]{x^{3}}, 1 \leq x \leq 2\right\}$
6. $\iint_{D} \sin (1+\ln (x)) d A, \quad D$ is the region bounded by $y=\frac{1}{x}, y=0, x=1$ and $x=3$
7. Evaluate $\iint_{D} 24 y^{2} d A$ where D is the triangle in the $x y$-plane with vertices $(0,0),(0,8)$ and $(6,2)$ in the order given,
(a) Integrate with respect to \boldsymbol{y} first and then \boldsymbol{x}.
(b) Integrate with respect to \boldsymbol{x} first and then \boldsymbol{y}.
8. Find the volume behind $x=1+y^{2}+4 z^{2}$ and in front of the region in the $y z$-plane bounded by $y=3 z$ and $y=6 \sqrt{z}$.

Note that we probably only looked at the volume under a function in the form $z=f(x, y)$ and above a region in the $x y$-plane. However, you can take that knowledge and modify it appropriately to arrive at a formula/method for working this problem.

For problems 9 and 10 evaluate the integral by reversing the order of integration.
9. $\int_{-2}^{0} \int_{x}^{-x} 12 x^{2} y^{4} d y d x$
10. $\int_{0}^{3} \int_{y^{4}}^{81} y^{11}\left(1+x^{4}\right)^{\frac{3}{2}} d x d y$
11. Evaluate $\iint_{D} x(1-4 y) d A$ where D is the triangle with vertices $(0,0),(0,-3) \&(3,-3)$ and the triangle with vertices $(0,0),(-3,0) \&(-3,3)$. See the sketch below.

