## Double Integrals in Polar Coordinates

For problems $1 \& 2$ evaluate the integral over the given region.

1. $\iint_{D} 48 x y^{3} d A, \quad D$ is the region between $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=36$ and to the right of the $y$-axis.
2. $\iint_{D} \mathbf{e}^{4 x^{2}+4 y^{2}-3} d A, D$ is the disk of radius 5 centered at the origin.
3. Find the volume of the solid that is bounded by $x=15-5 y^{2}-5 z^{2}$ and $x=2 y^{2}+2 z^{2}+1$. Note that you will have to use a modified version of polar coordinates to do this problem.
4. Use a double integral to derive the formula for the area of a circle of radius $a$.
5. Evaluate $\int_{0}^{4} \int_{-\sqrt{16-x^{2}}}^{0} \sin \left(1-x^{2}-y^{2}\right) d y d x$ by converting the integral into polar coordinates.

## Triple Integrals

For problems 6-9 evaluate the given integral.
6. $\int_{1}^{3} \int_{\sqrt{z}}^{0} \int_{0}^{-2} y^{2} x^{3} \mathbf{e}^{z^{3}} d y d x d z$
7. $\iiint_{E} 32 z d V$ where $E$ is the solid bounded by the planes $10 x+5 y+2 z=10, x=0, y=0$, and $z=0$. In other words $E$ is the solid that lies beneath $10 x+5 y+2 z=10$ and in the first octant.
8. $\iiint_{E} 36 y d V$ where $E$ is the solid that lies between $4 x+3 y+2 z=12$ and $x+3 y+3 z=21$ and is in front of the triangle in the $y z$-plane with vertices $(0,0),(2,0)$ and $(2,4)$ - these are in the form $(y, z)$.
9. $\iiint_{E} \sqrt{2 x^{2}+2 z^{2}} d V$ where $E$ is the solid that is in behind $y=8-3 x^{2}-3 z^{2}$ and in front of $y=-4$.
10. Use a triple integral to find the volume of the solid $E$ used in problem 8.

## Triple Integrals with Cylindrical Coordinates

For problems 11-13 you must use cylindrical coordinates to do the problem.
11. $\iiint_{E} x^{2} d V$ where $E$ is the solid that lies inside $x^{2}+y^{2}=16$, above $z=-\sqrt{4 x^{2}+4 y^{2}}$ and below $z=8 x^{2}+8 y^{2}$
12. Find the volume of the solid $E$ that is bounded by $y=3 x^{2}+3 z^{2}-24$ and $y=12-x^{2}-z^{2}$.
13. Use a triple integral to find a formula for the volume of a cylinder of radius $a$ and height $h$.

