Triple Integrals with Spherical Coordinates

For problems 1 and 2 you must use spherical coordinates to do the problems.

1. $\iiint_{E} x z d V$ where E is the region below the sphere of radius 3 and inside the cone $\varphi=\frac{\pi}{3}$.
2. $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}} d V$ where E is the region that lies in the first octant and between the spheres of radius 1 and 7.
3. Evaluate the following integral by first converting to spherical coordinates.

$$
\int_{-3}^{0} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \int_{-\sqrt{27-x^{2}-y^{2}}}^{-\sqrt{2 x^{2}+2 y^{2}}} x y d z d x
$$

Change of Variables

For problems 4 and 5 find the Jacobian of the transformation.
4. $x=12 u v^{3}-u^{2}, \quad y=8 u+12 v^{2}$
5. $x=\mu \cos \alpha, y=\mu \sin \alpha$

For problems 6-8 find and graph the image of the set R under the given transformation. Note that the point of these problems is not necessarily to transform R into a "nice" region. Instead all we're trying to do is apply some transformations to regions.
6. R is the triangle with vertices $(0,0),(4,-2),(4,12)$ and the transformation is $x=\frac{1}{3} u, y=\sqrt{1+2 v}$. Note that for each side you'll need the range of possible y values to in order to get a range of possible u values.
7. R is the rectangle bounded by the lines $x=0, x=2, y=0, y=8$ and the transformation is $u=y^{2}-2 x^{2}, v=\frac{1}{2} x y$.
Note that sometimes transformations are giving "backwards" as they are here. In these cases it is usually best to plug the equations defining R into the transformations rather than plugging the transformations in the equations defining R as we've done to this point.
8. R is the disk given by $x^{2}+y^{2} \leq 1$ and the transformation is $u=a x, v=b y$.
9. If R is the parallelogram with vertices $(-2,6),(2,4),(4,-2)$ and $(0,0)$ use the transformation $x=4 u-v$ $y=3 v-2 u$ to convert the region and evaluate the integral $\iint_{R} 8 x+2 y d A$.
10. If R is the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$ determine a transformation that will convert this into a circle of radius 1 and use that transformation to evaluate $\iint_{R} 24 y^{2} d A$.
Note that you've already seen how to turn a circle of radius 1 into an ellipse so use that as a guide to determine this transformation.

Surface Area

For problems 11 and 12 find the area of the given surface.
11. The part of the plane $6 x+3 y+8 z=24$ that lies in the first octant.
12. The part of the surface $z=6+x+2 y^{2}$ that lies above the triangle in the $x y$-plane with vertices $(0,0),(8,2)$ and $(0,2)$.
13. In class I gave you the formula for the surface area of $z=f(x, y)$ that lies above a region D in the $x y$-plane. Use a modification of this formula to find the surface area of the portion of $x=4 y^{2}+4 z^{2}-9$ that lies in behind of $x=3$.

