Vector Fields

For problems 1 and 2 find the gradient vector field for the given function.

1. $f(x, y)=\left(6 y-y^{3}\right) \mathbf{e}^{2-x^{2}}$
2. $f(x, y, z)=7 x z^{5} \cos \left(y^{2}-x^{2}\right)$

Parametric Curves

For problems 3-6 write down a set of parametric equations for the given curve as well as a range of the parameter t for which the curve will be traced out exactly once.
3. $9 x^{2}+\frac{y^{2}}{16}=1$
4. $x=y^{5}-y \sqrt{1+y}, 7 \leq y \leq 12$
5. The line segment that starts at $(-5,8)$ and ends at $(-2,-6)$.
6. The line $y=10$ that starts at $x=-1$ and ends at $x=-19$.

Line Integrals, Part I

7. Evaluate $\int_{C} 8 y d s$ over each of the following curves.
(a) C is the line segment from $(1,-1)$ to $(-3,1)$.
(b) C is the curve shown below and for this problem you MUST follow the given orientation.

8. Evaluate $\int_{C} x y^{2} d s$ where C is the upper half of the circle $x^{2}+y^{2}=4$ with clockwise orientation.
9. Evaluate $\int_{C} 4 z+x^{2}+8 y d s$ where C is the curve given by $\vec{r}(t)=\langle 9 t, 2+4 t,-7\rangle, 0 \leq t \leq 4$

Line Integrals, Part II

For problems 10-12 evaluate the line integral on he given curve.
10. $\int_{C} \cos (2+y) d y$ where C is the curve given by $y=\sqrt{x+1}, 0 \leq x \leq 3$.
11. $\int_{C} x y d x+x^{2} d y$ where C the line segment from $(4,3)$ to $(0,3)$ followed by the portion of the circle from $(0,3)$ to $(0,-3)$ as shown below.

12. $\int_{C}(4 x-y) d x-z^{2} d y-(x+y-4 z) d z$ where C is the line segment from $(2,0,-1)$ to $(5,1,-2)$.

