Green's Theorem

For problems 1 and 2 sketch the positively oriented curve (clearly indicating the positive orientation) and use Green's Theorem to evaluate the line integral along the given curve.

1. $\oint_{C} 16 x y d x+\left(1-x^{2}\right) d y$ where C is the portion of $y=x^{2}+4$ from $(-1,5)$ to $(2,8)$ and the three line segments : (i) from $(2,1)$ to $(2,8)$, (ii) from $(-1,1)$ to $(2,1)$, (iii) from $(-1,1)$ to $(-1,5)$.
2. $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(y^{3}+y^{2}\right) \vec{i}-x^{3} \vec{j}$ and C is the portion of $x^{2}+y^{2}=16$ from $(2,2 \sqrt{3})$ to $(-2 \sqrt{3}, 2)$ and the two line segments : (i) from $(0,0)$ to $(2,2 \sqrt{3})$ and (ii) $(0,0)$ to $(-2 \sqrt{3}, 2)$.

Curl and Diverence

3. Find the curl and divergence of $\vec{F}=\frac{y^{2}}{x z} \vec{i}+x \ln (x) \vec{j}+\left(4 z+x^{2}-y^{3}\right) \vec{k}$

For problems 4 and 5 use the curl to determine if the given vector field is conservative or not.
4. $\vec{F}=\frac{y^{2}}{x z} \vec{i}+x \ln (x) \vec{j}+\left(4 z+x^{2}-y^{3}\right) \vec{k}$
5. $\vec{F}=\left(4+\frac{y}{x}-2 x z^{3}\right) \vec{i}+\ln (x z) \vec{j}-\left(3 x^{2} z^{2}-\frac{y}{z}\right) \vec{k}$

Parametric Surfaces

For problems 6-9 find a parametric representation for the given surface.
6 . The plane containing the points $(1,-1,0),(2,0,3)$ and $(1,4,1)$.
7. The portion of $z=8 x^{2}+8 y^{2}+3$ that lies below $z=9$.
8. The cylinder $x^{2}+z^{2}=3$ between $y=-2$ and $y=15$.
9. The lower half of the sphere $x^{2}+y^{2}+z^{2}=16$.
10. Find the tangent plane to $x=7 u-u v, y=1-u^{2}, z=v^{2}-4 v$ at the point $(-2,-3,12)$.

For problems 11 and 12 find the area of the given surface.
11. The portion of $z=1+x^{2}+8 y$ that lies above the triangle with vertices $(0,0),(-4,0)$ and $(-4,-2)$.
12. The surface $r(u, v)=v \vec{i}-9 u v \vec{j}-u \vec{k}$ where $u^{2}+v^{2} \leq 4$.

