Separable Differential Equations

For problems $1 \& 2$ find the solution to the given IVP and determine the interval of validity for the solution. Any approximate answers must be to at least the $4^{\text {th }}$ decimal place and you may need computational aids in finding some of the intervals of validity.

1. $\left(1+\mathbf{e}^{2 x}\right) y^{\prime}=y^{4} \mathbf{e}^{2 x}$

$$
y(0)=-1
$$

2. $(6 x-7) y^{\prime}=\frac{1}{y^{2}}$

$$
y(0)=2
$$

3. Solve the following differential equation and determine the interval of validity. Any approximate answers must be to at least the $4^{\text {th }}$ decimal place.

$$
y^{\prime}=\frac{1-8 x}{5+y} \quad y(0)=-1
$$

Modeling, Part I

For problems 4 \& 5 you MUST set up and solve the appropriate IVP(s) in order to receive any credit for the problem. Any decimals must be to at least the $4^{\text {th }}$ decimal place.
4. A 400 gallon tank contains 250 gallons of water with 25 ounces of salt dissolved in it. Salt water with a concentration of $c(t)=12-7 \mathbf{e}^{-\frac{t}{25}}$ ounces/gal is flowing into the tank at a rate of 5 gallons/min and a well mixed solution flows out at a rate of 5 gallons $/ \mathrm{min}$. If left to forever, what would be the equilibrium (i.e. what would be the amount of salt in the tank as $t \rightarrow \infty$) amount of salt in the water?
5. A 1000 liter tank initial contains 800 liters of water with 100 grams of contaminate dissolved in it. Contaminated water with a concentration of 20 grams/liter flows into the tank at a rate of 8 liters $/ \mathrm{hr}$ and a well mixed solution flows out at a rate of 2 liters $/ \mathrm{hr}$. This will continue until the tank overflows. Once the tank overflows the concentration of the incoming of contaminated water is decreased to 12 grams/liter and the incoming flow rate is decreased to 5 liters/hr and a well mixed solution flows out at an increased rate of 5 liters/hr.

How much contaminate is in the tank 2 hours after the change?
6. Take the same situation from \#5 and 2 hours after the change the inflow concentration is changed to a concentration of $10 \mathrm{grams} / \mathrm{liter}$ while the flow rate is kept at $5 \mathrm{liters} / \mathrm{hr}$ and the well mixed solution flows out at an increased rate of 14 liters/hr. Set up, but do not solve, an IVP for this new situation.

