1. (4 pts) Here's the IVP's we need for this problem. Note that I'm using a time frame of months here and so all per week quantities will need to be multiplied by 4 to get them into a per month quantity.

$$
\begin{array}{lll}
P^{\prime}=r P & P(0)=250 & P(4)=1000 \\
P^{\prime}=r P-6(4)-12(4)=r P-72 & P(0)=250 &
\end{array}
$$

Solving the first and applying the initial condition gives the following solution which we can then apply the second condition,

$$
P(t)=250 \mathbf{e}^{r t} \quad 1000=250 \mathbf{e}^{4 r} \quad r=\frac{1}{4} \ln (4)
$$

The second IVP is now,

$$
P^{\prime}=\frac{1}{4} \ln (4) P-72 \quad P(0)=250
$$

I'll leave it to you to verify that the solution is,

$$
P(t)=\frac{288}{\ln 4}+42.2519 \mathbf{e}^{\frac{1}{4} \ln (4) t}
$$

From this we can see that the insects will survive because everything is positive and the exponential will go to infinity as $t \rightarrow \infty$.
3. (3 pts) Here's the IVP for this case.

$$
v^{\prime}=9.8-\frac{2}{12} v=9.8-\frac{1}{6} v \quad v(0)=0.2
$$

I'll leave it to you to verify the solution to this.

$$
v(t)=58.8-58.6 \mathbf{e}^{-\frac{1}{6} t}
$$

The height function is,

$$
s(t)=\int 58.8-58.6 \mathbf{e}^{-\frac{1}{6} t} d t \quad s(0)=0 \Rightarrow s(t)=58.8 t+351.6 \mathbf{e}^{-\frac{1}{6} t}-351.6
$$

We know the velocity the object hits the ground we can determine when the object hits the ground.

$$
30=58.8-58.6 \mathbf{e}^{-\frac{1}{6} t} \quad \rightarrow \quad \mathbf{e}^{-\frac{1}{6} t}=0.4915 \quad \Rightarrow \quad t=4.2622
$$

The bridge is then $s(4.2622)=71.8148 \mathrm{~m}$ above the ground.
5. (3 pts) The equilibrium solutions are $y=3$ and $y=-2$. A sketch of some solutions is to the right and from this we see the following classifications.

$$
\begin{array}{ll}
y=3 & \text { Unstable } \\
y=-2 & \text { Semi-stable }
\end{array}
$$

Not Graded

2. For this case the IVP is,

$$
P^{\prime}=r P-6(4)-12(4)-8(4)=r P-104 \quad P(2)=292.2519
$$

I^{\prime} Il leave it to you to verify that the solution is then,

$$
P(t)=\frac{416}{\ln 4}-3.9143 \mathbf{e}^{\frac{1}{4} \ln (4) t}
$$

Okay, the coefficient of the exponential is negative and so we can see that the fish will die out. They die out at,

$$
0=\frac{416}{\ln 4}-3.9143 \mathbf{e}^{\frac{1}{4} \ln (4) t} \quad \rightarrow \quad \mathbf{e}^{\frac{1}{4} \ln (4) t}=76.6626 \quad \Rightarrow \quad t=12.5209
$$

So, the well die out after 12.5209 months.
4. The equilibrium solutions are $y=0, y=4$ and $y=-2$. A sketch of some solutions is to the right and from this we see the following classifications.

$$
\begin{array}{ll}
y=4 & \text { Unstable } \\
y=0 & \text { Asympt. Stable } \\
y=-2 & \text { Unstable }
\end{array}
$$

6. We just need to run through the formulas using $f(t, y)=t y-\mathbf{e}^{t-y}$. Here's the results for $h=0.3$.

t	0.3	0.6
f_{n}	-0.1353352832	0.3975666155
Approx.	1.9593994150	2.0786693997

Here's the results for $h=0.15$.

t	0.15	0.3	0.45	0.6
f_{n}	-0.1353352832	0.1364932101	0.4174003100	0.7289207274
Approx.	1.9796997075	2.0001736890	2.0627837355	2.1721218446

For $h=0.3$ we have $y(0.6) \approx 2.0786693997$ and for $h=0.15$ we have $y(0.6) \approx 2.1721218446$.

