Homework Set 3 – Solution

1. (4 pts) Here's the IVP's we need for this problem. Note that I'm using a time frame of months here and so all per week quantities will need to be multiplied by 4 to get them into a per month quantity.

$$P' = rP P(0) = 250 P(4) = 1000$$

$$P' = rP - 6(4) - 12(4) = rP - 72 P(0) = 250$$

Solving the first and applying the initial condition gives the following solution which we can then apply the second condition,

$$P(t) = 250 e^{rt}$$
 $1000 = 250 e^{4r}$ $r = \frac{1}{4} \ln(4)$

The second IVP is now,

$$P' = \frac{1}{4} \ln(4) P - 72$$
 $P(0) = 250$

I'll leave it to you to verify that the solution is,

$$P(t) = \frac{288}{\ln 4} + 42.2519 \mathbf{e}^{\frac{1}{4}\ln(4)4}$$

From this we can see that the insects will survive because everything is positive and the exponential will go to infinity as $t \rightarrow \infty$.

3. (3 pts) Here's the IVP for this case.

$$v' = 9.8 - \frac{2}{12}v = 9.8 - \frac{1}{6}v \qquad v(0) = 0.2$$

I'll leave it to you to verify the solution to this.

$$v(t) = 58.8 - 58.6 \mathrm{e}^{-\frac{1}{6}t}$$

The height function is,

$$s(t) = \int 58.8 - 58.6 \mathbf{e}^{-\frac{1}{6}t} dt \quad s(0) = 0 \quad \Rightarrow \quad s(t) = 58.8t + 351.6 \mathbf{e}^{-\frac{1}{6}t} - 351.6t \mathbf{e}^{-\frac{1}{6}t$$

We know the velocity the object hits the ground we can determine when the object hits the ground.

$$30 = 58.8 - 58.6 \mathbf{e}^{-\frac{1}{6}t} \rightarrow \mathbf{e}^{-\frac{1}{6}t} = 0.4915 \implies t = 4.2622$$

The bridge is then s(4.2622) = 71.8148 m above the ground.

5. (3 pts) The equilibrium solutions are y = 3 and y = -2. A sketch of some solutions is to the right and from this we see the following classifications.

$$y = 3$$
 Unstable
 $y = -2$ Semi-stable

Not Graded

2. For this case the IVP is,

$$P' = rP - 6(4) - 12(4) - 8(4) = rP - 104 \qquad P(2) = 292.2519$$

I'll leave it to you to verify that the solution is then,

$$P(t) = \frac{416}{\ln 4} - 3.9143 \mathbf{e}^{\frac{1}{4}\ln(4)t}$$

Okay, the coefficient of the exponential is negative and so we can see that the fish will die out. They die out at,

 $0 = \frac{416}{\ln 4} - 3.9143 \mathbf{e}^{\frac{1}{4}\ln(4)t} \quad \to \quad \mathbf{e}^{\frac{1}{4}\ln(4)t} = 76.6626 \quad \Longrightarrow \quad \boxed{t = 12.5209}$

So, the well die out after 12.5209 months.

4. The equilibrium solutions are y = 0, y = 4 and y = -2. A sketch of some solutions is to the right and from this we see the following classifications.

<i>y</i> = 4	Unstable	
y = 0	Asympt. Stable	
<i>y</i> = -2	Unstable	

6. We just need to run through the formulas using $f(t, y) = t y - e^{t-y}$. Here's the results for h = 0.3.

t	0.3	0.6	
f_n	-0.1353352832	0.3975666155	
Approx.	1.9593994150	2.0786693997	

Here's the results for h = 0.15 .

t	0.15	0.3	0.45	0.6
f_n	-0.1353352832	0.1364932101	0.4174003100	0.7289207274
Approx.	1.9796997075	2.0001736890	2.0627837355	2.1721218446

For h = 0.3 we have $y(0.6) \approx 2.0786693997$ and for h = 0.15 we have $y(0.6) \approx 2.1721218446$.