Fundamental Sets of Solutions

1. In the case of real, distinct roots $\left(r_{1} \neq r_{2}\right) I$ made the claim that the two solutions were $y_{1}(t)=\mathbf{e}^{r_{1} t}$ and $y_{2}(t)=\mathbf{e}^{r_{2} t}$. Show that these two solutions are a fundamental set of solutions and that the general solution in this case is in fact $y(t)=c_{1} \mathbf{e}^{r_{1} t}+c_{2} \mathbf{e}^{r_{2} t}$. Make sure that you clearly justify your answer.
2. Suppose that you know that $f(x)=x^{-3}$ and $W(f, g)=x^{-5} \mathbf{e}^{x}$. Determine the most general possible $g(x)$ that will give this Wronskian. You may assume that $x>0$ for this problem.

Undetermined Coefficients, Part I

For problems 4-7 use the method of undetermined coefficients to determine the general solution to the given differential equation.
3. $y^{\prime \prime}+20 y^{\prime}+100 y=50 t^{3}-4 t$
4. $4 y^{\prime \prime}+4 y^{\prime}+21 y=-4 \mathbf{e}^{9 t}$
5. $y^{\prime \prime}-3 y^{\prime}-28 y=20 \sin (3 t)$
6. $y^{\prime \prime}-9 y^{\prime}+8 y=5 \mathbf{e}^{3 t} \cos (t)$
7. Solve the following IVP.

$$
y^{\prime \prime}+4 y=200 t^{2} \mathbf{e}^{6 t} \quad y(0)=-1, \quad y^{\prime}(0)=-3
$$

