Fundamental Sets of Solutions

1. In the case of real, distinct roots ($r_1 \neq r_2$) I made the claim that the two solutions were $y_1(t) = \mathbf{e}^{r_1 t}$ and $y_2(t) = \mathbf{e}^{r_2 t}$. Show that these two solutions are a fundamental set of solutions and that the general solution in this case is in fact $y(t) = c_1 \mathbf{e}^{r_1 t} + c_2 \mathbf{e}^{r_2 t}$. Make sure that you clearly justify your answer.

2. Suppose that you know that $f(x) = x^{-3}$ and $W(f,g) = x^{-5} e^x$. Determine the most general possible g(x) that will give this Wronskian. You may assume that x > 0 for this problem.

Undetermined Coefficients, Part I

For problems 4-7 use the method of undetermined coefficients to determine the general solution to the given differential equation.

3.
$$y'' + 20y' + 100y = 50t^3 - 4t$$

4.
$$4y'' + 4y' + 21y = -4e^{9t}$$

5.
$$y'' - 3y' - 28y = 20\sin(3t)$$

6.
$$y'' - 9y' + 8y = 5e^{3t} \cos(t)$$

7. Solve the following IVP.

$$y'' + 4y = 200t^2e^{6t}$$
 $y(0) = -1, y'(0) = -3$