Undetermined Coefficients, Part II

For problems $1 \& 2$ use the method of undetermined coefficients to determine the general solution to the given differential equation.

1. $y^{\prime \prime}+9 y^{\prime}=6+2 \cos (3 t)-9 \sin (3 t)$
2. $y^{\prime \prime}-6 y^{\prime}+9 y=\mathbf{e}^{-t}+4 \mathbf{e}^{3 t}$
3. Solve the following IVP using the method of undetermined coefficients.

$$
y^{\prime \prime}-4 y^{\prime}-12 y=6 t-8 \mathbf{e}^{-2 t} \quad y(0)=6, \quad y^{\prime}(0)=-1
$$

For problems 4 \& 5 write down the guess that we'd need to use with the method of undetermined coefficients to find the particular solution. Do not attempt to find the actual particular solution.
4. $y^{\prime \prime}+y^{\prime}-56 y=6 \mathbf{e}^{-8 t}+5 t-\mathbf{e}^{12 t}-(2-8 t) \mathbf{e}^{-8 t}$
5. $y^{\prime \prime}+10 y^{\prime}+29 y=6 t \cos (2 t)+(8+3 t) \mathbf{e}^{-5 t} \sin (2 t)-10 \sin (2 t)$

Variation of Parameters

6. Use the method of variation of parameters to find the solution to the following differential equation.

$$
y^{\prime \prime}+2 y^{\prime}+5 y=15 \mathbf{e}^{-t}
$$

7. Use the method of variation of parameters to find the solution to the following IVP.

$$
9 y^{\prime \prime}-y=10-3 t \quad y(0)=0, \quad y^{\prime}(0)=8
$$

Vibrations

For problems 8-11 any solutions containing both a sine and a cosine must be combined into a single cosine. Any decimal work should be to at least the $4^{\text {th }}$ decimal place.
8. A 4 lb object will stretch a spring 8 inches by itself. The mass has no damping and is initially displaced 4 inches upwards from its equilibrium position with an initial velocity of $10 \mathrm{in} / \mathrm{sec}$ upwards. Determine the displacement at any time t.
9. A 2 kilogram object will stretch a spring 40 cm by itself. The mass has a damper hooked up that will exert a force of 15 N when the velocity is $75 \mathrm{~cm} / \mathrm{sec}$. The mass is initially displaced 50 inches downwards from its equilibrium position with an initial velocity of $15 \mathrm{in} / \mathrm{sec}$ downwards. Determine the displacement at any time t. What kind of damping does the system experience?
10. Take the system from \#8 and hook up a forcing function of the form $g(t)=6 \cos (5 t)-\sin (5 t)$ and determine the displacement at any time t. Will this system experience resonance?
11. Take the system from \#9 and hook up a forcing function of the form $g(t)=8 \sin (2 t)$. Determine the displacement at any time t.

