\#3. (2 pts) $\lim _{t \rightarrow-3} \frac{2 t^{2}+5 t-3}{9-t^{2}}=\lim _{t \rightarrow-3} \frac{(2 t-1)(t+3)}{(3+t)(3-t)}=\lim _{t \rightarrow-3} \frac{2 t-1}{3-t}=\frac{-7}{6}$
\#5. (3 pts)

$$
\begin{aligned}
\lim _{y \rightarrow 1} \frac{2-\sqrt{y^{2}+3}}{y^{2}+5 y-6} & =\lim _{y \rightarrow 1} \frac{2-\sqrt{y^{2}+3}}{y^{2}+5 y-6} \frac{2+\sqrt{y^{2}+3}}{2+\sqrt{y^{2}+3}}=\lim _{y \rightarrow 1} \frac{4-\left(y^{2}+3\right)}{\left(y^{2}+5 y-6\right)\left(2+\sqrt{y^{2}+3}\right)} \\
& =\lim _{y \rightarrow 1} \frac{1-y^{2}}{\left(y^{2}+5 y-6\right)\left(2+\sqrt{y^{2}+3}\right)}=\lim _{y \rightarrow 1} \frac{(1-y)(1+y)}{(y+6)(y-1)\left(2+\sqrt{y^{2}+3}\right)} \\
& =\lim _{y \rightarrow 1} \frac{-(1+y)}{(y+6)\left(2+\sqrt{y^{2}+3}\right)}=\frac{-2}{28}=-\frac{1}{14}
\end{aligned}
$$

\#6. For (a) we can just use the lower formula since $11 \geq 6$ contains points on both sides in this interval. For (b) we'll need to look at the two one-sided limits since $x=6$ is the cutoff point and no interval contains points on both sides of it.
(a) - NOT GRADED!!! $\lim _{x \rightarrow 11} g(x)=\lim _{x \rightarrow 11}\left(x^{2}-3\right)=118$
(b) ($\mathbf{3} \mathbf{p t s}$) First the one sided limits.

$$
\begin{array}{lr}
\lim _{x \rightarrow 6^{-}} g(x)=\lim _{x \rightarrow 6^{-}} \mathbf{e}^{2+x}=\mathbf{e}^{8} & \text { because } x<6 \text { in this case } . \\
\lim _{x \rightarrow 6^{+}} g(x)=\lim _{x \rightarrow 6^{+}}\left(x^{2}-3\right)=33 & \text { because } x>6 \text { in this case }
\end{array}
$$

So, $\lim _{x \rightarrow 1} g(x)$ doesn't exist since the two one-sided limits are not the same.
\#8. (2 pts) In both of these limits the numerator is staying fixed at 4 and as x approaches 7 (from either side) we can see that $7-x$ is approaching zero. So, we have a fixed number divided by something increasingly smaller and so it should make some sense that both of these are going to either ∞ or $-\infty$ and this will depend upon the sign of the denominator

In the first case $7-x$ is positive since $x<7$ and raising this to the fifth power will keep it positive. So, in this case we have a fixed positive number in the numerator divided by something increasingly smaller positive number and so the limit in this case will be ∞.

In the second case $7-x$ is negative since $x>7$ and raising this to the fifth power will keep it negative. So, in this case we have a fixed n number in the numerator divided by an increasingly smaller negative number and so the limit in this case will be $-\infty$.

$$
\lim _{x \rightarrow 7^{-}} \frac{4}{(7-x)^{5}}=\infty \quad \lim _{x \rightarrow 7^{+}} \frac{4}{(7-x)^{5}}=-\infty
$$

Not Graded

\#1.
(a) $f(-3)=-2 \quad \lim _{x \rightarrow-3^{-}} f(x)=2 \quad \lim _{x \rightarrow-3^{+}} f(x)=2 \quad \lim _{x \rightarrow-3} f(x)=2$
(b) $f(0)=0 \quad \lim _{x \rightarrow 0^{-}} f(x)=0 \quad \lim _{x \rightarrow 0^{+}} f(x)=0 \quad \lim _{x \rightarrow 0} f(x)=0$
(c) $f(2)=$ d.n.e $\quad \lim _{x \rightarrow 2^{-}} f(x)=-4 \quad \lim _{x \rightarrow 2^{+}} f(x)=-4 \quad \lim _{x \rightarrow 2} f(x)=-4$
(d)

$$
\begin{aligned}
f(3)=2 \quad & \lim _{x \rightarrow 3^{-}} f(x)=2 \quad \lim _{x \rightarrow 3^{+}} f(x)=4 \\
& \lim _{x \rightarrow 3} f(x)=\text { doesn't exist } \mathrm{b} / \mathrm{c} \lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow-3^{+}} f(x)
\end{aligned}
$$

\#2.
(a) $\lim _{x \rightarrow-2}[9 g(x)-2 h(x)]=9 \lim _{x \rightarrow-2} g(x)-2 \lim _{x \rightarrow-2} h(x)=9(-1)-2(7)=-23$
(b) $\lim _{x \rightarrow-2}[1-5 f(x) g(x)]=\lim _{x \rightarrow-2} 1-5\left[\lim _{x \rightarrow-2} f(x)\right]\left[\lim _{x \rightarrow-2} g(x)\right]=1-5(8)(-1)=41$
(c) $\lim _{x \rightarrow-2} \frac{[f(x)]^{3}}{10+h(x)}=\frac{\left[\lim _{x \rightarrow-2} f(x)\right]^{3}}{\lim _{x \rightarrow-2} 10+\lim _{x \rightarrow-2} h(x)}=\frac{[8]^{3}}{10+7}=\frac{512}{17}$
\#4. $\lim _{z \rightarrow-1} \frac{(z-4)(z+2)+2-3 z}{z^{2}+5 z+4}=\lim _{z \rightarrow-1} \frac{z^{2}-5 z-6}{z^{2}+5 z+4}=\lim _{z \rightarrow-1} \frac{(z+1)(z-6)}{(z+1)(z+4)}=\lim _{z \rightarrow-1} \frac{z-6}{z+4}=-\frac{7}{3}$
\#7. Note that we can't just cancel the h 's since once is inside the absolute value bars. So, we'll use the hint and recall that,

$$
|h|= \begin{cases}h & \text { if } h \geq 0 \\ -h & \text { if } h<0\end{cases}
$$

With this we can do the two one sided limits to eliminate the absolute value bars.

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1 & \text { because } h<0 \text { in th } \\
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{-}} 1=1 & \text { because } h>0 \text { in this case }
\end{array}
$$

The two one-sided limits are not the same and so $\lim _{h \rightarrow 0} \frac{|h|}{h}$ does not exist
\#9. In both of these limits the numerator is staying fixed at -5 and as x approaches -3 (from either side) we can see that $x+3$ is approaching zero. So, we have a fixed number divided by something increasingly smaller and so it should make some sense that both of these are going to either ∞ or $-\infty$. Also note that in this case because we're squaring the denominator it will always be positive and so both of these limits will have a fixed negative numerator divided by an increasingly small positive number. Therefore, both will be $-\infty$.

Here are the official answers to this problem.

$$
\lim _{t \rightarrow-3^{-}} \frac{-5}{(2 x+6)^{2}}=-\infty \quad \lim _{t \rightarrow-3^{+}} \frac{-5}{(2 x+6)^{2}}=-\infty
$$

