Differentiation Formulas

1. Differentiate : $f(t)=\frac{1}{12 t^{5}}-\frac{3}{\sqrt[4]{t^{5}}}+4 t^{6}-9 t-12$
2. Find the equation of the tangent line to $g(x)=\frac{4-2 x}{\sqrt{x}}$ at $x=16$.
3. Find the point(s) where the tangent line to $f(x)=\left(x^{2}-2\right)(4-3 x)$ is perpendicular to the line $y=7+\frac{1}{4} x$.
4. The position function of an object is $s(t)=2 t^{3}-27 t^{2}+84 t+25$ where t is in seconds and s is in feet. Assume that the object starts moving at $t=0$ and answer the following questions.
(a) What is the velocity of the object at any time t ?
(b) When, if ever, is the object at rest (i.e. not moving)?
(c) When is the object moving to the right and when is it moving to the left?
5. For $f(x)=x^{5}-2 x^{4}-14 x^{3}+2$ determine the percentage of the range $[-2,6]$ that the function is increasing.

Product and Quotient Rule

For problems 6 \& 7 use the Product or Quotient Rule to find the derivative.
6. $y=\left(6 x^{-2}-7 x+3\right)\left(1+8 x^{-1}\right)$
7. $R(z)=\frac{3 z^{2}+4}{1-8 \sqrt{z}}$
8. The voltage in a rechargeable battery is given by $V(t)=\frac{3-t}{4 t^{2}-2 t+1}$ where t is in days. Assume that if the voltage is increasing it is being recharged and if the voltage is decreasing then the battery is in use. During the first 8 days is the battery in use more than it's being recharged?

Derivative of Trig Functions

For problems 9 \& 10 differentiate the given function.
9. $f(x)=\csc (x)-2 x^{6} \cot (x)$
10. $R(\theta)=\frac{\theta^{3}+6 \tan \theta}{1-\sec \theta}$
11. Is $h(z)=\frac{4-3 \tan z}{1-2 \sin z}$ increasing, decreasing or not changing at $z=2$?
12. Find the equation of the tangent line to $y=\cos (x) \cot (x)$ at $x=\frac{\pi}{2}$.
13. The population of some insects in a field is given by $P(t)=5 t+9 \sin (t)-3$ where t is in months. When in the first 15 months is the population not changing?

