Implicit Differentiation

For problems 1 & 2 find y'. **1.** $e^{x^2} - y^8 = x^4 \sin(10y)$

2. $e^{6y^3 - x^2} = 8x + \cos(y)$

3. Find the equation of the tangent line to $sin(x^2y^4) = 1 + 6yx^3$ at (-2, 0).

Related Rates

In order to receive any credit for problems 4 – 6 you MUST use Calculus techniques to find the answer. Any decimal work should include at least 4 decimal places.

4. A snowball in the shape of a sphere is melting in such a way that it is losing volume at a rate of $6 \text{cm}^3/\text{sec}$. How fast is the radius of the snowball decreasing when the surface area of the snowball is $48 \pi \text{ cm}^2$?

5. A tank of water in the shape of a cone is being filled at a rate of 3.5 ft³/min. The tank is 10 ft tall and has a base radius of 32 ft. At what rate is the height of the water in the tank changing when the water is 3 ft deep?

6. Two boats start out 1500 miles apart with boat A directly to the west of boat B. At the same time both boats start moving with boat A traveling to the east at 30 mph while boat B travels north at 60 mph. Determine if the distance between the boats is increasing, decreasing or not changing after the following travel times.

(a) 2 hours (b) 10 hours

(c) 75 hours

Higher Order Derivatives

For problems 7 – 10 compute the second derivative.

7.
$$B(x) = \sqrt[5]{x^3} - \frac{1}{2x} + 9x$$

8.
$$f(t) = \cos(4+3t) - 9e^{5t^2}(5t^2)$$

9. $y = \ln(1 + e^{2x})$

10. Compute
$$g^{(3)}(x)$$
 for $g(x) = \ln(15x^3) + e^{-4x} - \sin(3x)$