Implicit Differentiation

For problems $1 \& 2$ find y^{\prime}.

1. $\mathbf{e}^{x^{2}}-y^{8}=x^{4} \sin (10 y)$
2. $\mathbf{e}^{6 y^{3}-x^{2}}=8 x+\cos (y)$
3. Find the equation of the tangent line to $\sin \left(x^{2} y^{4}\right)=1+6 y x^{3}$ at $(-2,0)$.

Related Rates

In order to receive any credit for problems 4-6 you MUST use Calculus techniques to find the answer. Any decimal work should include at least 4 decimal places.
4. A snowball in the shape of a sphere is melting in such a way that it is losing volume at a rate of $6 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the radius of the snowball decreasing when the surface area of the snowball is $48 \pi \mathrm{~cm}^{2}$?
5. A tank of water in the shape of a cone is being filled at a rate of $3.5 \mathrm{ft}^{3} / \mathrm{min}$. The tank is 10 ft tall and has a base radius of 32 ft . At what rate is the height of the water in the tank changing when the water is 3 ft deep?
6. Two boats start out 1500 miles apart with boat A directly to the west of boat B . At the same time both boats start moving with boat A traveling to the east at 30 mph while boat B travels north at 60 mph . Determine if the distance between the boats is increasing, decreasing or not changing after the following travel times.
(a) 2 hours
(b) 10 hours
(c) 75 hours

Higher Order Derivatives

For problems 7-10 compute the second derivative.
7. $B(x)=\sqrt[5]{x^{3}}-\frac{1}{2 x}+9 x$
8. $f(t)=\cos (4+3 t)-9 \mathbf{e}^{5 t^{2}}\left(5 t^{2}\right)$
9. $y=\ln \left(1+\mathbf{e}^{2 x}\right)$
10. Compute $g^{(3)}(x)$ for $g(x)=\ln \left(15 x^{3}\right)+\mathbf{e}^{-4 x}-\sin (3 x)$

