\#1. (2 pts)

$$
\begin{aligned}
f^{\prime}(y) & =4(12-2 y)^{3}(-2)\left(y^{2}-3\right)^{2}+(12-2 y)^{4}(2)\left(y^{2}-3\right)(2 y) \\
& =4(12-2 y)^{3}\left(y^{2}-3\right)\left[-2\left(y^{2}-3\right)+y(12-2 y)\right]=4(12-2 y)^{3}\left(y^{2}-3\right)\left[-4 y^{2}+12 y+6\right]
\end{aligned}
$$

Now, to get the critical points we'll need to solve the following three equations,

$$
\begin{aligned}
12-2 y & =0 \\
y^{2}-3 & =0 \\
4 y^{2}-12 y-6 & =0
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& y=6 \\
& y= \pm \sqrt{3}= \pm 1.7321 \\
& y=\frac{12 \pm \sqrt{240}}{8}=-0.4365,3.4365
\end{aligned}
$$

So, we have a total of 5 critical points for this function.

\#2. (2 pts)

$$
\begin{aligned}
G^{\prime}(z) & =6 z\left(7-z^{2}\right)^{\frac{1}{3}}+\left(3 z^{2}+1\right)\left(\frac{1}{3}\right)\left(7-z^{2}\right)^{-\frac{2}{3}}(-2 z)=6 z\left(7-z^{2}\right)^{\frac{1}{3}}-\frac{2 z\left(3 z^{2}+1\right)}{3\left(7-z^{2}\right)^{\frac{2}{3}}} \\
& =\frac{18 z\left(7-z^{2}\right)-2 z\left(3 z^{2}+1\right)}{3\left(7-z^{2}\right)^{\frac{2}{3}}}=\frac{4 z\left(31-6 z^{2}\right)}{3\left(7-z^{2}\right)^{\frac{2}{3}}}
\end{aligned}
$$

From the denominator we see that $z= \pm \sqrt{7}$ must be a critical point since the derivative won't exist at those points (but the function does!). Also, the derivative will be zero at,

$$
z=0, \quad z= \pm \sqrt{\frac{31}{6}}= \pm 2.2730
$$

This function has five critical points.
\#8. (2 pts) We found the critical points to this function in \#3 and those that are in [-4, -1] are : -2.2749. So, all we need to do is evaluate the function at this point and the end points.

$$
Q(-4)=-376 \quad Q(-2.2749)=158.9892 \quad Q(-1)=65
$$

The absolute maximum is 158.9892 at $t=-2.2749$ and the absolute minimum is -376 at $t=-4$.
\#10. (2 pts) We'll first need the critical points of this function that lie in $[0,15]$.

$$
P^{\prime}(t)=8-50 \frac{2 t}{t^{2}+6}=\frac{8 t^{2}-100 t+48}{t^{2}+6}=\frac{4(2 t-1)(t-12)}{t^{2}+6}
$$

So, there are two critical points for this function, $t=\frac{1}{2}$ and $t=12$ and both lie in the interval so all we need to do now is some quick function evaluations.

$$
P(0)=160.4120 \quad P\left(\frac{1}{2}\right)=162.3709 \quad P(12)=95.4682 \quad P(15)=97.8791
$$

The maximum population is then 16,237.09 (fractions don't make much sense, but l'll keep them) at $t=\frac{1}{2}$ and the minimum population is $9,546.82$ at $t=12$.
\#13. (2 pts) $f^{\prime}(t)=15 t^{4}-20 t^{3}-360 t^{2}=5 x^{2}\left(3 x^{2}-4 x-72\right)$ So, it looks like the critical points are,

$$
x=0, \frac{2 \pm \sqrt{55}}{3}=-4.2775,5.6108
$$

I will leave it to you to actually draw a number line for this problem. Here are the derivative values that I used for mine.

$$
f^{\prime}(-5)=2875 \quad f^{\prime}(-1)=-325 \quad f^{\prime}(1)=-365 \quad f^{\prime}(6)=2160
$$

From this we get the following increasing/decreasing information and classification of critical points.
Increasing : $(-\infty,-4.2775),(5.6108, \infty) \quad$ Decreasing : $(-4.2775,0),(0,5.6108)$

$$
x=-4.2775: \text { Rel. Max. } \quad x=0: \text { Neither } \quad x=5.6108: \text { Rel. Min. }
$$

Not Graded

\#3. $Q^{\prime}(t)=-12 t^{3}+36 t^{2}+144 t=-12 t\left(t^{2}-3 t-12\right) \quad \Rightarrow \quad t=0, \frac{3+\sqrt{57}}{2}=0,-2.2749,5.2749$
\#4. $A^{\prime}(t)=5-21 \cos (3 t) \Rightarrow \cos (3 t)=\frac{5}{21} \quad \Rightarrow \quad 3 t=\cos ^{-1}\left(\frac{5}{21}\right)=1.3304$

$$
\begin{array}{llll|}
3 t=1.3304+2 \pi n & \& & 3 t=4.9528+2 \pi n & n=0, \pm 1, \pm 2, \ldots \\
\hline t=0.4435+\frac{2 \pi n}{3} & \& & t=1.6509+\frac{2 \pi n}{3} & n=0, \pm 1, \pm 2, \ldots \\
\hline
\end{array}
$$

\#5. $h^{\prime}(x)=2 x \mathbf{e}^{x^{2}-5}-24 x \mathbf{e}^{-4 x^{2}}=2 x\left(\mathbf{e}^{x^{2}-5}-12 \mathbf{e}^{-4 x^{2}}\right)$
Now, clearly $x=0$ is a critical point. Any others will come from solving,

$$
\begin{aligned}
\mathbf{e}^{x^{2}-5}-12 \mathbf{e}^{-4 x^{2}}=0 & \Rightarrow \mathbf{e}^{x^{2}-5}=12 \mathbf{e}^{-4 x^{2}} \quad \Rightarrow \quad \mathbf{e}^{5 x^{2}-5}=12 \\
& \Rightarrow 5 x^{2}-5=\ln (12) \Rightarrow x= \pm \sqrt{\frac{1}{5}(12)}= \pm 1.2235
\end{aligned}
$$

So, there are three critical points for this function.
\#6. Rel. Max : $b, d, f \quad$ Rel. Min.: $c, e \quad$ Abs. Max.: $d \quad$ Abs.Min.: g
\#7. Not much to this problem. We found all the critical points in \#1 and those that are in [1, 4] are : $y=\sqrt{3}$ and $y=3.4365$. So, all we need to do is evaluate the function at these points and the end points.

$$
\begin{array}{ll}
f(\sqrt{3})=0 & f(3.4365)=53,623.9707 \\
f(1)=40,000 & f(4)=43,264
\end{array}
$$

The absolute maximum is then $53,623.9707$ at $y=3.4365$ and the absolute minimum is 0 at $y=-2$ and $y=\sqrt{3}$.
\#9. All we are really asking here is what is the absolute maximum of this function in $[0,3]$ and we know how to do that. In \#4 we found the critical points of this function to be,

$$
t=0.4435+\frac{2 \pi n}{3} \quad \& \quad t=1.6509+\frac{2 \pi n}{3} \quad n=0, \pm 1, \pm 2, \ldots
$$

and the ones that are in $[0,3]$ (the interval we're interested in here) are,

$$
\begin{array}{lll}
0.4435 & 1.6509 & 2.5379
\end{array}
$$

The function evaluations for this problem are,

$$
\begin{array}{lll}
A(0)=6 & A(0.4435)=1.4186 & A(1.6509)=21.0533 \\
A(2.5379)=11.8906 & A(3)=18.1152 &
\end{array}
$$

So, the absolute maximum is 21.0533 , and this corresponds, to $\$ 21,053.3$ and so yes, the manager does get a bonus.
\#11. In this problem we're asking for the absolute minimum of the function in [0,5]. From \#3 we know that we'll have two critical points in this region $(t=0,4)$ and we need to evaluate the function at these points and the endpoints. Here are all the relevant evaluations for this problem.

$$
Q(0)=8 \quad Q(4)=648 \quad Q(5)=433
$$

So, the absolute maximum of 648 and so it does rise above 500 grams and so the process will stop during the first 5 hours.
\#12. In \#5 we found the critical points of this function to be : $t=-1.2235,0,1.2235$. I will leave it to you to actually draw a number line for this problem. Here are the derivative values that I used.

$$
h^{\prime}(-2)=-1.4715 \quad h^{\prime}(-1)=0.4029 \quad h^{\prime}(1)=-0.4029 \quad h^{\prime}(2)=1.4715
$$

From this we get the following increasing/decreasing information and classification of critical points.
Increasing : $(-1.2235,0),(1.2235, \infty) \quad$ Decreasing : $(-\infty,-1.2235),(0,1.2235)$

$$
x=-1.2235: \text { Rel. Min. } \quad x=0: \text { Rel. Max. } \quad x=1.2235: \text { Rel. Min. }
$$

