Vectors - The Basics

1. Explain the difference between $(-2,4)$ and $\langle-2,4\rangle$. Illustrate the difference with a sketch.

Vector Arithmetic

For problems 2 \& 3 find $\|\vec{a}\|, 12 \vec{b}$ and $6 \vec{a}-7 \vec{b}$.
2. $\vec{a}=\langle 4,1\rangle \quad \vec{b}=\langle-8,-5\rangle$
3. $\vec{a}=5 \vec{i}-7 \vec{j} \quad \vec{b}=\vec{i}-9 \vec{j}-4 \vec{k}$
4. Find a unit vector that is in
(a) the same direction as $\vec{w}=\langle 5,2,-6\rangle$
(b) the opposite direction as $\vec{v}=\vec{i}+5 \vec{j}-4 \vec{k}$

Dot Product

For problems $5 \& 6$ compute $\vec{a} \cdot \vec{b}$.
5. $\vec{a}=\langle 2,9,-4\rangle, \quad \vec{b}=5 \vec{i}-\vec{j}+7 \vec{k}$
6. $\|\vec{a}\|=18,\|\vec{b}\|=5$ and the angle between \vec{a} and \vec{b} is $\theta=\frac{5 \pi}{9}$.

For problems 7 \& 8 find the angle between the two vectors and determine if the two vectors are parallel, orthogonal or neither.
7. $\vec{p}=\langle 0,8,-2\rangle, \quad \vec{q}=12 \vec{i}-9 \vec{j}+10 \vec{k}$
8. $\vec{x}=\vec{i}+7 \vec{j}-2 \vec{k}, \vec{y}=\langle 8,-4,-10\rangle$
9. For $\vec{a}=\langle 2,9,-3\rangle, \quad \vec{b}=\langle 7,0,-6\rangle$ find the vector projection of \vec{b} onto \vec{a}.
10. For $\vec{a}=\langle 2,9,-3\rangle, \quad \vec{b}=\langle 7,0,-6\rangle$ find the vector projection of \vec{a} onto \vec{b}.

Cross Product

11. Find $\vec{v} \times \vec{w}$ and $\vec{w} \times \vec{v}$ for $\vec{v}=\langle 4,1,-8\rangle$ and $\vec{w}=3 \vec{i}-2 \vec{j}+7 \vec{k}$
12. Find a vector that is orthogonal to the plane containing $(3,-2,2),(1,-7,2)$ and $(1,-1,3)$.
13. Determine if $\langle 0,2,3\rangle,\langle-1,1,0\rangle$ and $\langle 8,3,-4\rangle$ all lie in the same plane.
