Vectors – The Basics

1. Explain the difference between (-2,4) and $\langle -2,4 \rangle$. Illustrate the difference with a sketch.

Vector Arithmetic

For problems 2 & 3 find $\|\vec{a}\|$, $12\vec{b}$ and $6\vec{a}-7\vec{b}$.

2.
$$\vec{a} = \langle 4, 1 \rangle$$
 $\vec{b} = \langle -8, -5 \rangle$
3. $\vec{a} = 5\vec{i} - 7\vec{j}$ $\vec{b} = \vec{i} - 9\vec{j} - 4\vec{k}$

4. Find a unit vector that is in

- (a) the same direction as $\vec{w} = \langle 5, 2, -6 \rangle$
- (b) the opposite direction as $\vec{v} = \vec{i} + 5\vec{j} 4\vec{k}$

Dot Product

For problems 5 & 6 compute $\vec{a} \cdot \vec{b}$.

5. $\vec{a} = \langle 2, 9, -4 \rangle$, $\vec{b} = 5\vec{i} - \vec{j} + 7\vec{k}$ **6.** $\|\vec{a}\| = 18$, $\|\vec{b}\| = 5$ and the angle between \vec{a} and \vec{b} is $\theta = \frac{5\pi}{9}$.

For problems 7 & 8 find the angle between the two vectors and determine if the two vectors are parallel, orthogonal or neither.

7.
$$\vec{p} = \langle 0, 8, -2 \rangle, \quad \vec{q} = 12\vec{i} - 9\vec{j} + 10\vec{k}$$

8. $\vec{x} = \vec{i} + 7\vec{j} - 2\vec{k}, \quad \vec{y} = \langle 8, -4, -10 \rangle$

9. For $\vec{a} = \langle 2, 9, -3 \rangle$, $\vec{b} = \langle 7, 0, -6 \rangle$ find the vector projection of \vec{b} onto \vec{a} .

10. For $\vec{a} = \langle 2, 9, -3 \rangle$, $\vec{b} = \langle 7, 0, -6 \rangle$ find the vector projection of \vec{a} onto \vec{b} .

Cross Product

11. Find $\vec{v} \times \vec{w}$ and $\vec{w} \times \vec{v}$ for $\vec{v} = \langle 4, 1, -8 \rangle$ and $\vec{w} = 3\vec{i} - 2\vec{j} + 7\vec{k}$

12. Find a vector that is orthogonal to the plane containing (3, -2, 2), (1, -7, 2) and (1, -1, 3).

13. Determine if (0,2,3), (-1,1,0) and (8,3,-4) all lie in the same plane.