\#1. (4 pts) Here are the three (don't forget the one for finding r) IVP's that we'll be needing.

$$
\begin{array}{lll}
P^{\prime}=r P & P(0)=100 & P(4)=200 \\
P_{1}^{\prime}=r P_{1}+6-21=r P_{1}-15 & P_{1}(0)=100 & 0 \leq t \leq 6 \\
P_{2}^{\prime}=r P_{2}+10-32=r P_{2}-22 & P_{2}(0)=P_{1}(6) t \geq 6
\end{array}
$$

Note that we're using t in weeks so we had to use $t=4$ for the one month population.

We first need to find r and this is an easy linear or separable differential equation to solve so l'll leave the details to you. Solving gives,

$$
P(t)=100 \mathbf{e}^{r t}
$$

Plugging in $t=8$ and solving for r gives,

$$
200=100 \mathbf{e}^{r(4)} \Rightarrow \quad 2=\mathbf{e}^{r(4)} \quad \Rightarrow \quad r=\frac{1}{4} \ln (2)
$$

The first IVP is then,

$$
P_{1}^{\prime}=\frac{1}{4} \ln (2) P_{1}-15 \quad P_{1}(0)=100
$$

Here is the solution to this differential equation.

$$
\begin{aligned}
& P_{1}^{\prime}-\frac{1}{4} \ln (2) P_{1}=-15 \quad \mu(t)=\mathbf{e}^{-\frac{1}{4} \ln (2) t} \\
& \int\left(\mathrm{e}^{-\frac{1}{4} \ln (2) t} P_{1}\right)^{\prime} d t=\int-15 \mathbf{e}^{-\frac{1}{4}(2) t} d t \\
& \mathbf{e}^{-\frac{1}{4} \ln (2) t} P_{1}=\frac{60}{\ln (2)} \mathbf{e}^{-\frac{1}{4} \ln (2) t}+c \\
& P_{1}(t)= \frac{60}{\ln (2)}+c \mathbf{e}^{-\frac{1}{4} \ln (2) t}
\end{aligned}
$$

Plugging in the initial condition gives $c=13.4383$ so the population during this time is,

$$
P_{1}(t)=\frac{60}{\ln (2)}+13.4383 \mathbf{e}^{\frac{1}{4} \ln (2) t}
$$

Now that we have this out of the way we can proceed with the second time frame. Here is the IVP for this time frame.

$$
P_{2}^{\prime}=\frac{1}{4} \ln (2) P_{2}-22 \quad P_{2}(6)=P_{1}(6)=124.5709
$$

Solving this is identical to solving the first one and so l'll leave the details of the solution to you. Here is the population during this time frame.

$$
P_{2}(t)=\frac{88}{\ln (2)}-0.8437 \mathbf{e}^{\frac{1}{4} \ln (2) t}
$$

Okay, the coefficient of the exponential is negative and so eventually the population will reach zero and the world will be safe from the rabbits. The world will become safe at,

$$
0=\frac{88}{\ln (2)}-0.8437 \mathbf{e}^{\frac{1}{4} \ln (2) t} \quad \Rightarrow \quad t=28.9338 \text { weeks }
$$

\#2. (4 pts) I'll be working this assuming that downwards is the positive direction for all quantities. I'll also be defining the level of the bridge to be $s=0$. Under these assumptions the IVP that governs this falling body is,

$$
v^{\prime}=9.8-\frac{4}{10} v=9.8-\frac{2}{5} v \quad v(0)=0.5
$$

This is a simple linear differential equation to solve so l'll leave the solution details to you. The velocity at any time is,

$$
v(t)=24.5-24 \mathbf{e}^{-\frac{2}{5} t}
$$

Next we'll need the height function and this we find as follows,

$$
s(t)=\int v(t) d t=\int 24.5-24 \mathbf{e}^{-\frac{2}{5} t} d t=24.5 t+60 \mathbf{e}^{-\frac{2}{5} t}+c
$$

Using the fact that $s(0)=0$ by assumption we get that,

$$
s(t)=24.5 t+60 \mathbf{e}^{-\frac{2}{5} t}-60
$$

To determine how long it took for the mass to hit the lake we need to solve,

$$
25=24.5 t+60 \mathbf{e}^{-\frac{2}{5} t}-60 \quad \Rightarrow \quad t \equiv 2.068 \quad t=2.60579
$$

So, it took 2.60579 seconds for the mass to hit the lake and the velocity at which it hits the lake (which we'll need for \#3) is $v(2.60579)=16.0367$.
\#4. (2 pts) So, the equilibrium solutions are,

$$
y=0, \quad y=3, \quad y=-\frac{5}{2}
$$

Here's a sketch of a few solutions for this differential equation. From this we can see that

$$
\begin{array}{ll}
y=3 & \text { semi-stable } \\
y=0 & \text { unstable } \\
y=-\frac{5}{2} & \text { asymptotically stable }
\end{array}
$$

Not Graded
\#3. In this case the IVP will be,

$$
v^{\prime}=9.8-\frac{12}{10} v=9.8-\frac{6}{5} v \quad v(2.60579)=16.0367
$$

I'll leave the solution details to you since this is a simple linear differential equation.

$$
v(t)=8.16667+179.47256 \mathrm{e}^{-\frac{-}{5} t}
$$

Using $s(2.60579)=25$ the height function is,

$$
s(t)=8.16667 t-149.56047 \mathrm{e}^{-\frac{6}{5} t}+10.27766
$$

The depth of the lake is then,

$$
s(2.60579+4)-25=64.17105-25=39.17105
$$

The lake is 39.17105 meters deep. Note that because I used all "zero" quantities at the bridge I had to add in the time it took to reach the lake and then subtract off the height of the bridge.
\#5. Upon factoring the right side we get : $y^{\prime}=y(b+3 y)$
So, the equilibrium solutions are,

$$
y=0, \quad y=-\frac{b}{3}>0
$$

Do NOT get excited that you don't know what b is. It is a negative number and so the equilibrium solution is positive. If you need to think of it as $b=-6$ and you can see what's going on. Here's a sketch of a few solutions for this differential equation. From this we can see that

$$
\begin{array}{ll}
y=-\frac{b}{3} & \\
y=0 & \text { unstable } \\
y= & \text { asymptotically stable }
\end{array}
$$

\#6. There really isn't much to do here other than run through the formulas and noting that,

$$
f(t, y)=1+\left(t+\mathbf{e}^{-2 y}\right)^{2}
$$

Here are the results for $h=0.1$. The exact values are included for comparison purposes.

t	0.1	0.2
f_{n}	55.59815003	1.010021911
Approx	4.559815003	4.660817194
Exact	-0.151461103	0.094366657

Here are the results using $h=0.05$.

t	0.05	0.1	0.15	0.2
f_{n}	55.59815003	1.006153475	1.015805881	1.030011046
Approx	1.779907502	1.830215176	1.881005470	1.932506022
Exact	-0.348518328	-0.151461103	-0.016123087	0.094366657

So, it looks like for $h=0.1$ we have $y(0.2) \approx 4.660817194$ and for $h=0.05$ we have $y(0.2) \approx 1.932506022$. Note that the results are not all the great either. It takes an $h=0.001$ or so to start getting decent results.....

