Fundamental Sets of Solutions

1. In the case of real, distinct roots ($r_{1} \neq r_{2}$) I made the claim that the two solutions were $y_{1}(t)=\mathbf{e}^{r_{1} t}$ and $y_{2}(t)=\mathbf{e}^{r_{2} t}$. Show that these two solutions are a fundamental set of solutions and that the general solution in this case is in fact $y(t)=c_{1} \mathbf{e}^{r_{1} t}+c_{2} \mathbf{e}^{r_{2} t}$. Make sure that you clearly justify your answer.
2. Suppose that we know that $f(x)=x^{2}$ and that $W(f, g)=x^{4} \cos (3 x)$. Determine the most general possible $g(x)$ that would have given this Wronskian. You may assume that $x>0$ for this problem.

Undetermined Coefficients, Part I

For problems 4-7 use undetermined coefficients to determine the general solution to the given differential equation.
3. $9 y^{\prime \prime}-6 y^{\prime}+145 y=4 \mathbf{e}^{-3 t}$
4. $y^{\prime \prime}-20 y^{\prime}+100 y=13 \cos (2 t)$
5. $4 y^{\prime \prime}+12 y^{\prime}+9 y=3 t^{2} \mathbf{e}^{-t}$
6. $y^{\prime \prime}+4 y=(50 t-5) \sin (3 t)$
7. Solve the following IVP

$$
y^{\prime \prime}-9 y^{\prime}+18 y=72 t^{3}+9, \quad y(0)=2 \quad y^{\prime}(0)=-6
$$

