Fundamental Sets of Solutions

1. In the case of real, distinct roots $(r_1 \neq r_2)$ I made the claim that the two solutions were $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$. Show that these two solutions are a fundamental set of solutions and that the general solution in this case is in fact $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$. Make sure that you clearly justify your answer.

2. Suppose that we know that $f(x) = x^2$ and that $W(f,g) = x^4 \cos(3x)$. Determine the most general possible g(x) that would have given this Wronskian. You may assume that x > 0 for this problem.

Undetermined Coefficients, Part I

For problems 4 – 7 use undetermined coefficients to determine the general solution to the given differential equation.

3.
$$9y'' - 6y' + 145y = 4e^{-3t}$$

4.
$$y'' - 20y' + 100y = 13\cos(2t)$$

5.
$$4y'' + 12y' + 9y = 3t^2e^{-t}$$

6.
$$y'' + 4y = (50t - 5)\sin(3t)$$

7. Solve the following IVP

$$y'' - 9y' + 18y = 72t^3 + 9,$$
 $y(0) = 2$ $y'(0) = -6$

$$y(0) = 2$$
 $y'(0) = -6$