Undetermined Coefficients, Part II

For problems 1 and 2 use undetermined coefficient to determine the solution to the given differential equation.

1. $y^{\prime \prime}+8 y^{\prime}+20 y=5+4 \cos (2 t)-8 \sin (2 t)$
2. $3 y^{\prime \prime}+7 y^{\prime}=9-\mathbf{e}^{-t}-14 t$
3. Solve the following IVP using undetermined coefficients.

$$
y^{\prime \prime}+2 y^{\prime}-8 y=20 \mathbf{e}^{t}-90 t \mathbf{e}^{2 t} \quad y(0)=0, \quad y^{\prime}(0)=-2
$$

For problems $4 \& 5$ determine the best guess for the particular solution for the differential equation. Do not attempt to find the actual particular solution.
4. $y^{\prime \prime}-12 y^{\prime}+37 y=\mathbf{e}^{6 t}-\left(1+3 t^{4}\right) \mathbf{e}^{6 t}-3 \mathbf{e}^{6 t} \sin (t)$
5. $y^{\prime \prime}+24 y^{\prime}+144 y=t \sin (4 t)-\cos (4 t)+t^{2} \mathbf{e}^{-12 t}$

Variation of Parameters

6. Use variation of parameters to find the solution to the following differential equation.

$$
4 y^{\prime \prime}+4 y^{\prime}+17 y=12 \mathbf{e}^{-\frac{1}{2} t}
$$

7. Solve the following IVP using variation of parameters.

$$
2 y^{\prime \prime}+7 y^{\prime}-4 y=4+3 \mathbf{e}^{2 t}, \quad y(0)=-2 \quad y^{\prime}(0)=1
$$

Vibrations

For problems 8-11 if you use decimals in your answers use a minimum of four decimal places for all numbers. Also if the solution contains both a sine and a cosine it should be reduced to a single cosine.
8. $\mathrm{A} 1 / 4 \mathrm{lb}$ object will stretch a spring 6 inches by itself. If there is no damping in the system and the mass is initially displaced 1 inch upward from the equilibrium point and given an initial velocity of $5 \mathrm{in} / \mathrm{sec}$ upward determine the displacement, $u(t)$.
9. A 60 gram mass will stretch a spring 1 cm by itself and a damper is hooked up to the system and will exert a force of 0.75 N when the velocity is $6.25 \mathrm{~cm} / \mathrm{s}$. The mass is initially displaced 10 cm downward from the equilibrium point and released with initial velocity of $8 \mathrm{~cm} / \mathrm{sec}$ upward. Determine the displacement, $u(t)$, at any time t.

Continued on Back \Rightarrow

10. Take the system from \#8 and hook up a forcing function of the form $F(t)=\mathbf{e}^{-4 t}-\sin t$ to it. Determine the displacement, $u(t)$, at any time t. Does the system experience resonance?
11. Take the system from \#9 and hook a forcing function of the form $F(t)=7 \cos (2 t)$ to it. Determine the displacement, $u(t)$, at any time t.
