Calculus and analytic geometry 2413, Oct 28, 2010,

Test #2

Show ALL supporting work. Box final answers. Use up white pages first. Follow the mathematical writing rules.

Only basic calculators are allowed. Only one solid hand-written notebook is allowed. Each part of Problem 1 is 5 points. Problems 2-7 are 10 points each.

Differentiate the following functions, simplify, and perform the required tasks.

a)
$$f(x) = \frac{x^2 + 9x + 14}{x^2 - 16}$$
, find $f'(x)$ and simplify.

b)
$$f(x) = x^4 e^x$$
, find roots of $f'(x) = 0$.

c)
$$f(x) = \csc(x) + e^x \cot(x)$$
, find $f'(x)$.

d)
$$f(x) = \frac{1 + \sin x}{x + \cos x}$$
, find roots of $f'(x) = 0$.

e)	f(x)	$=\cos^5($	$(x^3 +$	x^{2}),	find	f'	(x)

f)
$$f(x) = (2x+3)^5(4x+5)^7$$
, find roots of $f'(x) = 0$.

g)
$$x^4y^2 + 8x^3y^3 + x^2y^4 = 10$$
, find y' using implicit differentiation, also find equation of tangent line at $(1,1)$.

h) Use Logarithmic differentiation to find
$$f'(x)$$
 if $f(x) = \sin(x)^{\cos(x)}$

2) Find and simplify (using factorial notation) $f^{(100)}(x)$ and $f^{(101)}(x)$ if $f(x) = \frac{1}{2}$	$\frac{5}{7}$.
2) I find and simplify (using factorial notation) $f = f(x)$ and $f = f(x)$	r7.

3) At noon, ship A is 200 km west of ship B. Ship A is sailing north at 40 km/h and ship B is ALSO sailing north at 70 km/h. How fast is the distance between ships changing at 6:00 P.M.?

4) Use differentials or linear approximation to estimate $\sqrt[3]{999.1}$. Show all steps.

5a.)	What	is	the	differential	α f	u =	r^3	+	r^2
Ja)	vvnat	19	une	umeremai	Οī	y -	$\boldsymbol{\iota}$	\top	\boldsymbol{x}

5b) Evaluate dy for x = 1 and dx = 0.1.

- 5c) Evaluate Δy for x = 1 and dx = 0.1.
- 6) Find the absolute maximum and minimum of $f(x) = x^3 + x^2 x + 1$ on [-2, 1].

7) Verify that the function satisfies the hypothesis of the Mean Value Theorem on the given interval. (List the conditions.) Find all numbers c that satisfy the conclusion of the MVT.

MVT.
$$f(x) = \frac{x-1}{2x+3}$$
, $[-1, 3]$.