Differentiate the following functions, simplify, and perform the required tasks.

a) \(f(x) = \frac{x^2 + 9x + 14}{x^2 - 16} \), find \(f'(x) \) and simplify.

b) \(f(x) = x^4 e^x \), find roots of \(f'(x) = 0 \).

c) \(f(x) = \csc(x) + e^x \cot(x) \), find \(f'(x) \).

d) \(f(x) = \frac{1 + \sin x}{x + \cos x} \), find roots of \(f'(x) = 0 \).
e) $f(x) = \cos^5(x^3 + x^2)$, find $f'(x)$.

f) $f(x) = (2x + 3)^5(4x + 5)^7$, find roots of $f'(x) = 0$.

g) $x^4y^2 + 8x^3y^3 + x^2y^4 = 10$, find y' using implicit differentiation, also find equation of tangent line at (1, 1).

h) Use Logarithmic differentiation to find $f'(x)$ if $f(x) = \sin(x)^{\cos(x)}$
2) Find and simplify (using factorial notation) $f^{(100)}(x)$ and $f^{(101)}(x)$ if $f(x) = \frac{5}{x^7}$.

3) At noon, ship A is 200 km west of ship B. Ship A is sailing north at 40 km/h and ship B is ALSO sailing north at 70 km/h. How fast is the distance between ships changing at 6:00 P.M.?

4) Use differentials or linear approximation to estimate $\sqrt{999.1}$. Show all steps.
5a) What is the differential of \(y = x^3 + x^2 \).

5b) Evaluate \(dy \) for \(x = 1 \) and \(dx = 0.1 \).

5c) Evaluate \(\Delta y \) for \(x = 1 \) and \(dx = 0.1 \).

6) Find the absolute maximum and minimum of \(f(x) = x^3 + x^2 - x + 1 \) on \([-2, 1]\).

7) Verify that the function satisfies the hypothesis of the Mean Value Theorem on the given interval. (List the conditions.) Find all numbers \(c \) that satisfy the conclusion of the MVT.

\[
 f(x) = \frac{x - 1}{2x + 3}, \quad [-1, 3].
\]