Assignment 7

Mathematics: Introduction to Differential Equation, Taylor Series
Programming: Epsilon or eps or ϵ of machine

A differential equation is a relationship between a quantity and its derivative, or rate of change. So, first we review derivatives. You remember from calculus 1 that $f^{\prime}(x)=$ $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, and you learned a variety of techniques for finding $f^{\prime}(x)$. If you have learned anything in this class it is that life (math) on a computer is not a simple extension of math on blackboard. With that in mind, it is better to check the notion of derivative in practice and see what happens. Pick a function, say $f(x)=\sin (x)$, pick a point at which to compute the derivative, say $\pi / 6$ (remember derivative formulas for trig functions are good only if you use radians), and try to evaluate the derivative. Theoretically we expect to get $\cos (\pi / 6)$ or $\sqrt{3} / 2$. (By the way, can you prove this? If not, and you are a math major, call the Ghost Busters! ... But I digress.) So how do we calculate the derivative numerically, well you approximate it as a difference quotient, just copying $\frac{f(x+h)-f(x)}{h}$, and evaluating it for different values of h. The snag is how do you do $\lim _{h \rightarrow 0}$? That is where the trap is. You will say let me take smaller and smaller values of h, I am supposed to come infinitely close to the derivative, that is what the definition says. Here we part ways. To see, just try it. Do a do loop, for $\mathrm{i}=1: 20 \mathrm{~h}=10^{-i} \ldots$ and print the error to full accuracy. (Some of you are still calculating to 2 decimal places. Wake up! We have 16 decimal places on standard Matlab or a typical software.) Which value of h gives the best answer? Let's call this h^{\star}. Definitely h^{\star} is not the smallest h value you used.
So what gives? There are two issues we need to learn. Here is an overly brief explanation. First issue: a floating number on computer has finite precision (other than certain numbers, as in $M / 2^{n}$, which are exactly reproduced). In high school you used to write $1 / 3=0.33$, of course that is not correct, you need an infinite string of threes. Well a typical computer is like you but it cuts numbers off at the 16 -th decimal place, almost. A typical floating number x on the computer memory has an error of representation that is about $\epsilon \cdot x$, where ϵ is software/hardware dependent and is about 10^{-16} for us, indicating that the information past the 16 -th decimal place is lost. You can type eps at Matlab to see its exact value. Or you can type \gg help eps. By definition ϵ is the smallest number such that $1+\epsilon>1$ on your machine. Type $1+10^{-20}>1$ and $1+10^{-12}>1$ to see the difference. Second issue: If you are my favorite Martian you remember from calculus 2 that $f(x+h)=$ $f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) h^{2} / 2+\cdots$. So $\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)=f^{\prime \prime}(x) h / 2+\cdots$. So the formula you use for the derivative has a mathematical truncation error of about $f^{\prime \prime}(x) h / 2$. More over your difference quotient has an error of about $2 f(x) \epsilon / h$, (you have to add the errors, they do not cancel, and for a generic h values, not too small, this is a good approximation, \cdots, we are skipping some details here) so your total error is $T(h)=\frac{2|f(x)| \epsilon}{h}+\frac{h\left|f^{\prime \prime}(x)\right|}{2}$. Now here is a standard problem from calculus 1, for what value of h is the total error $T(h)$ smallest? Compute this and compare it to the h^{\star} you found above.

