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ABSTRACT

The generalized spectral radius (GSR) is a fundamental concept in studying
the regularity of compactly supported wavelets. Here we describe an efficient
method for estimating a lower bound for the GSR. Let M, be the set of all g x g
matrices with complex entries. Suppose ¥ = {Aq,..., An—1} is a collection of
mm matrices in M. Let £, be the set of all products of length n of the elements
of ¥. Define pn(X) = maxacr, [p(A)]*'"™, where p(A) is the spectral radius of
A. The generalized spectral radius of X is then p(¥) = limsup,,_, . pr(2). The
standard method for estimating p(X), from below and at level n, is to calculate
the spectral radii of all m™ products in £,, and select the largest. Here we use
three elementary theorems from linear algebra, combinatorics, and number theory
to show that the same result can be obtained with no more than m™/n matrix
calculations.

INTRODUCTION

The generalized spectral radius (GSR) is a fundamental concept in study-
ing the regularity of compactly supported wavelets. Such wavelets can be
constructed via infinite products of a special set of matrices. The GSR is
the main measuring tool in determining the maximal growth rate of such
products. In this respect, it generalizes the usual notion of spectral radius
of a single matrix to a finite set of matrices. A similar notion, that of
joint spectral radius (JSR), was first defined by Rota and Strang [1] and
was shown to be equivalent to a third definition. Later, Daubechies and
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Lagarias (2, 3| defined a generalized spectral radius (GSR) and conjectured
that the two notions are equivalent. The conjecture was proved by Berger
and Wang [4]. Hence for finite sets of matrices there is a well-defined
notion of spectral radius. The finiteness conjecture, the statement that
p(X) = pn(X) for some n, is investigated in [5]. Collela and Heil describe
exact and approximate results for several special classes of matrices in [6].
Heil and Strang prove the continuity of the GSR as a function of matrix
entries in [7].

The direct estimation of the GSR. has an exponentially increasing cost.
The branch-and-bound method [2, 3], originally defined for GSR, reduces
the cost for estimating an upper bound. Gripenberg [8] has modified this
method to include an estimate for a lower bound and improve efficiency.
Here we describe an efficient method for*estimating a lower bound for the
GSR. This method can be combined with [8] to provide further speed up.

Let Mff be the set of k-tuples where all components are ¢ x g matrices
with complex entries. In this paper all matrices belong to an appropri-
ate M,. Denote the spectral radius of a matrix B by p(B), and define
the average spectral radius of an element of Mf; by p(B1, Bs,...,B) =
[p(B1Ba -+ By)]Y*. Suppose ¥ = {Ay,..., An_y} is a collection of m ma-
trices in M. Let £, be the set of all products (or words) of length n of
the elements of . Define p,(X) = maxace, [p(4)]Y" = maxacr, B(A).
The generalized spectral radius of ¥ is then p(X) = limsup,,_, ., pn(2).
The standard method for estimating p(X), from below and at level n, is to
calculate the spectral radii of all m™ products in £,, and select the largest.
Here we use three theorems from linear algebra, combinatorics, and num-
ber theory to show that the same result can be obtained with no more than
m™ /n matrix calculations.

A brief outline of this paper is as follows. An elementary theorem of
linear algebra states that the characteristic polynomial of a product is in-
variant under the cyclic permutation of the elements of the product. The
same applies to the spectral radius; e.g., p(ABC) = p(BCA) = p(CAB).
This gives the major savings in matrix calculations for the GSR. The num-
ber of cyclically different products (or words) in £, is given by a clas-
sical combinatorical result due to MacMahon where the leading term is
m™/n. Further savings can be achieved by eliminating from calculations
the products which are a “full power” (of a shorter product). For example,
ABAB = (AB)?% hence p(ABAB) = 5(AB), and we need not calculate
the spectral radius for the product ABARB if it has been calculated for AB.
We show that the number of cyclically different products which are not
a full power is given by the Dedekind-Liouville transform of MacMahon’s
formula. After this elimination, the number of matrix calculations at level
n will be no more than m” /n.
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1. OPTIMIZING THE LOWER BOUND

The main saving in the calculation of the GSR comes from the following
theorem [9]. (A completely algebraic proof of this theorem for the more
general case of rectangular matrices is given in [9, Theorem 1.3.20].)

THEOREM 1. Let A and B be square matrices of the same size. Then
the characteristic polynomials of AB and BA are equal.

Proof. Let f(A,\) = det(A — ) denote the characteristic polynomial
of-the matrix A. Assume B is an invertible matrix. Then we have
f(AB,\) = det(AB — X\) = det[(A — AB~1)B]
— det[B(A — AB~Y)] = det(BA — \) = f(BA, )),
which proves the theorem. If B is not invertible, set B, = B —¢, where € is
a number different from any of the eigenvalues of B. Then B, is invertible;
therefore f(AB.,A) = f(B.A,\). In the limit as ¢ — 0 we obtain the

statement of the theorem, since the determinant is a continuous function
of the matrix entries. L]

COROLLARY 1.  The characteristic polynomial, and hence all the eigen-
values and the spectral radius of a product of matrices, are invariant under
cyclic permutation of product entries. That is,

f(CiC2---CiCiy1-+- Cny X) = f(Cigr -+ CrCi1Ca--- O, A)
and
p(C1Ca - CiCiy1 - Cp) = p(Ciy1 -+ - CnC1C - Cy).

Proof. This is immediate if weset A = C1Cy---Ciand B = Cyq---Cy
in Theorem 1. u

In order to count the matrix calculations we need the following theorem

[10, 11].

TueoreM 2 (MacMahon).  The number of cyclically different words of
length n from a set of m characters is

1 e
M(n,m) = > Zm%ﬁ(i) ;
d\n .

where ¢ 15 the Euler totient function. (@(l) is the number of integers in
{0,...,1 — 1} which are relatively prime to l. ¢(1) = 1, and if | = Hpg*
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is a prime factorization of I, then ¢(1) = IpM~Y(p; — 1). We use d\n to
indicate (summation over) positive diwvisors, that is, n = kd where k is an
integer and d is a positive integer.)

For example if there are two characters, Ag and A, then the number of
cyclically different words (or products) of length 6 is

1
M(6,2) Zz‘f ( ) = g[21@(6) +2%6(3) + 23¢(2) + 25¢(1)] = 14.
ci\G
These 14 products are

A§ ASAL, AGAS, ABAD, AB AL Ap Ay, ARAZ Ao Ay, (A2A;)°, (ApAL)3,

AS AT A, ATAZ AT AR, AT Ap AL Ag, ATAZA, Ay, (A;'fAu)z, (A1 Ap)?

where the underlined items are to be deleted, since they are cyclically
equivalent to the products that are printed above them.

In practice one calculates the average spectral radius for all the products
of length 1 through some n. In that case one can eliminate products which
are a power of a smaller product from consideration. For example, from
the above 14 products 5 are powers of products of shorter length. They

are
A8, (A241)°, (A0A1)3, AS, (A240)°.

Therefore, of all the 2° = 64 products of length 6, only 14 — 5 = 9 have
average spectral radius distinct from each other and from the products of
shorter length. Notice that the savings rate is somewhat better than the
length of the product, e.g. 9 < 2°/6. In the rest of this paper we generalize
the above example.

Assume N(n,m) is the number of cyclically different products of length
n which are not a power of a product of shorter length. Then we have

N(n,m) = M(n,m) Z N(d,m) (1)
d\n
d<n
To see this let A be a product of length n. Suppose A can be written as a
power of a product B of a shorter length d, and B itself is not a power of
any product of a shorter length. Then necessarily d\n, d < n. The number
of matrices which share the same properties with B is N(d, m), and each
of these matrices can be used to eliminate exactly one entry from the list
of products of length n.
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We can write the above formula as

(n,m) ZN (d,m) (2)

d\n

Now we can use the Dedekind-Liouville inversion principle [10, 12, 13] to
find N in terms of M.

THEOREM 3 (Dedekind-Liouville). We have

=> h{d) h(ﬂ»)=2u(d).c<g),

d\n d\n

where  is the Mdbius function. (pu(1) = 1, and if | = Hi;lp?‘ is prime
factorization of I, then u(l) = (=1)* if all a; = 1; otherwise u(l) = 0.)

We can use the above theorem to deduce

N(n,m) =Y u(d) M( ,m> (3)

d\n

This formula gives the required number of calculations at level n. We
can simplify this formula considerably if we use the following multi-index
nota’non Let z = (z1,%2,--.,%x), 8 = (B1,52,---,0k), and define zf =
Hf 15' . For a given poly nomlal H(z) =34 agz” define “term by term
exponcntlatlon in base m as

E(m, H)( Z agm

Suppose 1 > 1 is given. Let the prime factorization of n be written as
n = Hle pi’, and set p = (p1,pa, ..., pk). Furthermore, define a polyno-
mial Q(p) by

Q=Q(p Hp K 1)

Now we can give a brief formula for the Dedekind-Liouville transform of
MacMahon's formula.

THEOREM 4.  Suppose () is defined as above then the number of matriz
products of length n that have average spectral radius different from each
other and from products of shorter length is given by

N(n,m) = %E(m, Q)(p). (4)
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Proof. This can shown by applying MacMahon’s formula and using
induction on (1).

For example if n = pips then Q(p) = p1(p1 — 1)(p2 — 1) = pips — p? —
pip2 +p1 and

1 2 2
N(n,m) = —(mPiP? — mPL — mP1P2 4 P},
n

Similarly, it n = pips then Q(p) = (p1 —1)(p2 — 1) = p1p2 —p1 —p2+ 1 and
1
N(n,m) = —(mPP? —mPr —mP? 4 m).
n

The latter example is applicable to n = 6 and m = 2. We write 6 = 2 x 3;
therefore N (6,2) = §(2% — 2% — 22 + 2) =9, as was seen before.
In the next theorem we give an upper bound for V.
THEOREM 5. We have N(1,m) = M(1,m) =m and
m"

N(n,m) < &) for n>1. (5)

Proof. 'This is a simple consequence of the next, more general theorem.
' |

THEOREM 6. Let H(z) = 3 sasx”, and assume H(z*) > 0 for all
E > 0 and all z in a certain set. Then for anym > 1 we have E(m, H)(x) >
0 for all z in the same set.

Proof. We have

2 In*(m) ak
E{im,H)(z) = Z(Lgm :Z o Za.,gm :

k=0 : A

B Z ln (m) ) > 0,

Which proves the theorem.
In order to prove Theorem 5 we only need to notice that for n > 1

k k
Q=T o= 1) < [ =
=1 =1

Moreover, this inequality remains valid when p; is replaced by pé“'. Now,
upon term by term exponentiation of the two sides of the inequality, we
obtain the result of Theorem 5. |
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