Review of differentiation and integration rules from Calculus I and II for Ordinary Differential Equations, 3301

General Notation:

a, b, m, n, C are non-specific constants, independent of variables
e, π are special constants $e=2.71828 \cdots, \pi=3.14159 \cdots$
f, g, u, v, F are functions
$f^{n}(x)$ usually means $[f(x)]^{n}$, but $f^{-1}(x)$ usually means inverse function of f
$a(x+y)$ means a times $x+y$, but $f(x+y)$ means f evaluated at $x+y$
$f g$ means function f times function g, but $f(g)$ means output of g is input of f
t, x, y are variables, typically t is used for time and x for position, y is position or output ${ }^{\prime},{ }^{\prime \prime}$ are Newton notations for first and second derivatives.
Leibnitz notations for first and second derivatives are $\frac{d}{d x}$ and $\frac{d^{2}}{d x^{2}}$ or $\frac{d}{d t}$ and $\frac{d^{2}}{d t^{2}}$
Differential of x is shown by $d x$ or Δx or h
$f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$, derivative of f shows the slope of the tangent line, rise over run, for the function $y=f(x)$ at x

General differentiation rules:

1a- Derivative of a variable with respect to itself is 1 . $\frac{d t}{d t}=1$ or $\frac{d x}{d x}=1$.
1b- Derivative of a constant is zero.
2- Linearity rule $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}$
3- Product rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
4- Quotient rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$
5- Power rule $\left(f^{n}\right)^{\prime}=n f^{n-1} f^{\prime}$
6- Chain rule $(f(g(u)))^{\prime}=f^{\prime}(g(u)) g^{\prime}(u) u^{\prime}$
7- Logarithmic rule $(f)^{\prime}=\left[e^{\ln f}\right]^{\prime}$
8- PPQ rule $\left(f^{n} g^{m}\right)^{\prime}=f^{n-1} g^{m-1}\left(n f^{\prime} g+m f g^{\prime}\right)$, combines power, product and quotient 9- PC rule $\left(f^{n}(g)\right)^{\prime}=n f^{n-1}(g) f^{\prime}(g) g^{\prime}$, combines power and chain rules
10- Golden rule: Last algebra action specifies the first differentiation rule to be used

Function-specific differentiation rules:

$\left(u^{n}\right)^{\prime}=n u^{n-1} u^{\prime}$

$$
\begin{aligned}
& \left(u^{v}\right)^{\prime}=u^{v} v^{\prime} \ln u+v u^{v-1} u^{\prime} \\
& \left(a^{u}\right)^{\prime}=a^{u} u^{\prime} \ln a \\
& \left(\log _{a}(u)\right)^{\prime}=\frac{u^{\prime}}{u \log a}
\end{aligned}
$$

$$
(\sin (u))^{\prime}=\cos (u) u^{\prime}
$$

$$
(\tan (u))^{\prime}=\sec ^{2}(u) u^{\prime}
$$

$$
(\sec (u))^{\prime}=\sec (u) \tan (u) u^{\prime}
$$

$$
\begin{aligned}
\left(\sin ^{-1}(u)\right)^{\prime} & =\frac{u^{\prime}}{\sqrt{1-u^{2}}} & \left(\cos ^{-1}(u)\right)^{\prime} & =\frac{-u^{\prime}}{\sqrt{1-u^{2}}} \\
\left(\tan ^{-1}(u)\right)^{\prime} & =\frac{u^{\prime}}{1+u^{2}} & \left(\cot ^{-1}(u)\right)^{\prime} & =\frac{-u^{\prime}}{1+u^{2}} \\
\left(\sec ^{-1}(u)\right)^{\prime} & =\frac{u^{\prime}}{u \sqrt{u^{2}-1}} & \left(\csc ^{-1}(u)\right)^{\prime} & =\frac{-u^{\prime}}{u \sqrt{u^{2}-1}}
\end{aligned}
$$

General integration definitions and methods:

1- Indefinite integral $\int f(x) d x=F(x)+C$ means $F^{\prime}(x)=f(x), F$ is antiderivative of f
2- Definite integral $\int_{a}^{b} f(x) d x=F(b)-F(a)$ is area under $y=f(x)$ from $x=a$ to $x=b$
3- Linearity $\int(a f+b g) d x=a \int f d x+b \int g d x$
4a- Integration by parts $\int f g^{\prime} d x=f g-\int f^{\prime} g d x$
4b- Integration by parts $\int u d v=u v-\int v d u$
5a- Indefinite integration by substitution $\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u$ when $u=g(x)$
5b- Definite integration by substitution $\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u$ when $u=g(x)$
6- Integration by partial fraction decomposition
7- Integration by trigonometric substitution, reduction, circulation, etc
8- Study Chapter 7 of calculus text (Stewart's) for more detail
Some basic integration formulas:

$$
\begin{array}{ll}
\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, n \neq-1 & \int \frac{d u}{u}=\ln (u)+C \\
\int e^{u} d u=e^{u}+C & \int a^{u} d u=\frac{a^{u}}{\ln a}+C \\
\int \cos (u) d u=\sin (u)+C & \int \sin (u) d u=-\cos (u)+C \\
\int \sec ^{2}(u) d u=\tan (u)+C & \int \csc ^{2}(u) d u=-\cot (u)+C \\
\int \sec (u) \tan (u) d u=\sec (u)+C & \int \csc (u) \cot (u) d u=-\csc (u)+C \\
\int \tan (u) d u=\ln |\sec (u)|+C & \int \cot (u) d u=-\ln |\csc (u)|+C \\
\int \frac{1}{u^{2}+a^{2}} d u=\frac{1}{a} \tan -1\left(\frac{u}{a}\right)+C & \int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\sin -1\left(\frac{u}{a}\right)+C \\
\int \frac{1}{u^{2}-a^{2}} d u=\frac{1}{2 a} \ln \left|\frac{u-a}{u+a}\right|+C & \int \csc (u) d u=\ln |\csc (u)-\cot (u)|+C \\
\int \sec ^{u^{2} \pm a^{2}} & d u) d u=\ln \left|u+\sqrt{u^{2} \pm a^{2}}\right|+C \\
\int \sec ^{3}(u) d u=\frac{1}{2}(\sec (u)+\tan (u) \mid+C & \left.\int \tan (u)+\ln |\sec (u)+\tan (u)|\right)+C \\
\int \csc ^{3}(u) d u=\frac{1}{2}(-\csc (u) \cot (u)+\ln |\csc (u)-\cot (u)|)+C
\end{array}
$$

